ISSN: 2089-9823 DOI: 10.11591/edulearn.v20i1.20897

The relationship between students' perceptions and their engagement through self-regulated learning

Maridha Normawati¹, Frieda Maryam Mangunsong Siahaan¹, Rose Mini Agoes Salim¹, Shahnaz Safitri¹, Astri Setiamurti¹, Atikah Ainun Mufidah²

¹Faculty of Psychology, Universitas Indonesia, Depok City, Indonesia ²Faculty of Psychology, Universitas Negeri Jakarta, South Jakarta, Indonesia

Article Info

Article history:

Received Apr 8, 2023 Revised Nov 26, 2024 Accepted Mar 19, 2025

Keywords:

Creativity fostering behavior Self-regulated learning Statistics Student engagement University

ABSTRACT

The engagement of psychology students in statistics courses requires improvement because the learning material is challenging to understand. This leads to the emphasis on the teaching ability of lecturers, which is one of the external factors to increase student engagement. Internal factors such as self-regulated learning can impact engagement during lectures. Therefore, this study examines the role of self-regulated learning as a mediator in the relationship between students' perceptions of creativity fostering teacher behavior (p-CFTB) and the engagement of psychology undergraduates in the statistics class. A mediation test using RStudio software was utilised to examine the role of self-regulated learning as a mediator, and 533 undergraduate psychology students from different parts of Indonesia participated in this study. The results showed that self-regulated learning partially mediated the relationship between p-CFTB and student engagement with the indirect effect value was greater than the direct effect. Therefore, student engagement is more affected by self-regulated learning in its role as a mediator than when it occurs without a mediator. Consequently, this study found that the role of various actors, such as lecturer behavior to foster creativity is needed to improve student self-regulated learning so that student engagement can function at its most effective.

This is an open access article under the CC BY-SA license.

3 87

Corresponding Author:

Maridha Normawati Faculty of Psychology, Universitas Indonesia Pondok Cina, Beji District, Depok City, West Java 16424, Indonesia Email: maridha.normawati01@ui.ac.id

1. INTRODUCTION

Due to the COVID-19 pandemic, students experience difficulties with online lectures. These challenges include boredom caused by many assignments [1], difficulty understanding the material, a lack of interaction between lecturers, students, and their peers [2]. Furthermore, students are more likely to experience stress, become passive learners, lose creativity, and feel bored [1]. Due to these various challenges, there has been a tendency for student engagement to decline during lectures [3], [4]. Online learning is also more challenging when the courses studied are difficult. Students in social science clusters especially psychology find statistics to be a challenging topic to study [5]. Students find statistics challenging because they feel confused to understand it [6]. This causes undergraduate psychology students experience anxiety when studying statistics [5].

An important aspect of online learning is the endeavour to boost student engagement [7], especially in learning statistics. Research on declining student engagement is crucial since these effects will impact on motivation and learning success [8], [9]. Student engagement is defined as the motivation and involvement in undergoing lecture

activities [10]. Numerous internal and external factors affect student engagement. The internal factors influencing student engagement include techno-pedagogical skills, self-directed learning [11], self-regulated learning [12], [13], motivation, self-efficacy [14], and student perception [15]. Meanwhile, the external factors are the lecturer's teaching ability [16], parents, friends, technology, and university curriculum [17].

The lecturer's teaching ability is the external factor that has the most significant influence on student engagement [16] because it will greatly influence the level of interaction with students [18]. Interaction between students and lecturers is the factor that most influences online learning compared to the relationship between students and their peers [7]. Students' perceptions of lecturers based on the interaction process will significantly influence student engagement because a positive relationship will increase student confidence in learning [15]. Regarding a qualitative report Setiawan *et al.* [19], creative teaching was highly needed to increase student engagement. It is also widely recognised that creative instruction from lecturers increases student engagement in online courses [20]. The behavior to foster creativity is known as creativity fostering teacher behavior (CFTB) [21]. The creativity fostering teacher index (CFTIndex) [22] was developed to measure teacher behavior in fostering student creativity regarding the nine dimensions of CFTB, namely independence, integration, motivation, judgment, flexibility, evaluation, question, opportunities, and frustration [21]. Previous research explained the correlation between student perceptions of teacher behaviors and student engagement [23], although the teacher behavior did not focus on fostering creativity.

One of internal factors, namely self-regulated learning, affects student engagement. Self-regulated learning is defined as an individual various active efforts to improve academic abilities [24]. Self-regulated learning is one of the strategies used to maintain student engagement in lectures [12]. The learning strategy impacted academic engagement in students [25]. Self-regulated learning is an internal factor chosen in research to become a mediator due to the positive correlation between self-regulated learning and student engagement [12], [17], [25]. Self-regulated learning has also been known to develop learning creativity and academic achievement [26]. Online education also analyzes self-regulated learning due to its essential digital abilities [27]. From this context, online self-regulated learning is students' complete or partial ability to regulate the digital educational process [28]. This leads to the implementating of the online self-regulated learning questionnaire (OSLQ), whose dimensions consist of environmental structuring, goal setting, time management, seeking help, task strategies, and self-evaluation [28].

Research has found a relationship between student perceptions of teacher behavior and self-regulated learning, although the teacher behavior studied did not specifically measure CFTB [29]. Based on the literature review, the relationship between perceptions of creativity fostering teacher behavior (p-CFTB) and student engagement is yet to be highly studied in higher education. Therefore, this study aims to determine the mediation effects of self-regulated learning on the relationship between p-CFTB and student engagement. The hypothesis of the research (H_1) is that the relationship between p-CFTB and student engagement can be mediated by self-regulated learning.

2. METHOD

This study used a quantitative design, with the participants being psychology undergraduates who had completed the statistics course. Data collection was also carried out from october to december 2022, with convenience sampling used by distributing online via social media and offline questionnaires. In addition, offline questionnaires were distributed to undergraduates via the student executive board of the Faculty of Psychology at many universities and asked for lecturer permission to gather data from their students after class. Although 671 participants filled out the questionnaire, only 533 met the criteria and were used in the study. Participation was also voluntary, with the participants filling out informed consent before filling out the questionnaire.

Three measurement tools were implemented in this study, namely the CFTIndex [22], the university student engagement inventory (USEI) [10], and the OSLQ [28]. The students' p-CFTB was also adapted into the Indonesian version of the CFTIndex instrument [22] with 27 items selected using Lee and Kemple [30] procedure. Moreover, confirmatory factor and Cronbach alpha analyses were used to measure validity and reliability, respectively. Maximum likelihood estimation was also implemented because data were normally distributed. Based on the validity and reliability tests, the CFTIndex instrument was valid at comparative fit index (CFI)=0.904, root mean square error of approximation (RMSEA)=0.065, and standardized root mean square residual (SRMR)=0.047 [31], while being reliable at Cronbach α =0.94.

The Indonesian version of the USEI [10] with 15 items was also implemented. From the validity and reliability tests, the instrument was valid at CFI=0.905, RMSEA=0.072, and SRMR=0.064 [31], while being reliable at Cronbach α =0.852. Moreover, the Indonesian version of the OSLQ instrument [20] was adopted to be a total of 21 items [32]. Based on the validity and reliability tests, the OSLQ instrument was valid at

CFI=0.906, RMSEA=0.070, and SRMR=0.055 [31], while being reliable at Cronbach α =0.913. The statistical analysis of the study data was also carried out by using RStudio 2022.07.2+576.

3. RESULTS

3.1. Demographic characteristics

Based on Table 1, the involved 533 participants contained 18.39% male and 81.61% female students. Most participants were 18-20 years old (86.87%) and in the third semester (60.41%), with 61.73% and 38.27% attending state and private universities, respectively. The locations of the institutions were also scattered in various parts of Indonesia, with most of them originating from DKI Jakarta (41.09%), accompanied by the provinces of West Java (30.58%), East Java (11.82%), Banten (6.75%), Sumatera (4.88%), Central Java (1.69%), Yogyakarta (1.69%), Kalimantan (0.94%), and Sulawesi (0.56%).

Table 1. Demographic characteristics

Characteri	n	%	
Age	18-20	463	86.87
8-	21-25	65	12.19
	>25	5	0.94
Gender	Male	98	18.39
	Female	435	81.61
Semester	3	322	60.41
	4	3	0.56
	5	183	34.34
	≥7	25	4.69
University location	Sumatera	26	4.88
	DKI Jakarta	219	41.09
	Banten	36	6.75
	West Java	163	30.58
	Yogyakarta	9	1.69
	Central Java	9	1.69
	East Java	63	11.82
	Kalimantan	5	0.94
	Sulawesi	3	0.56
University type	State	329	61.73
	Private	204	38.27

3.2. Descriptive analysis and correlation among variables

Table 2 explains the descriptive analysis and Pearson correlation between variables. The correlation analysis between p-CFTB and student engagement showed a value of 0.592. The correlation between the p-CFTB and self-regulated learning provided a moderate relationship. However, a difference was observed in the correlation between self-regulated learning and student engagement, with the strongest relationship of 0.700. In this case, the correlation between p-CFTB and self-regulated learning had the lowest relationship at 0.572, although the value was included in the moderate category.

Table 2. Descriptive analysis and correlation data

Variables	Mean	SD	Min	Max	1	2	3
1. p-CFTB	126	18.18	77	162	1		
2. Self-regulated learning	89	16.17	51	144	0.572*	1	
3. Student engagement	69	9.16	43	90	0.592*	0.700*	1

Note: *p<0.01

3.3. Mediation analysis

Figure 1 presents the mediation analysis of self-regulated learning in the relationship between the p-CFTB and student engagement. The significant direct effect of p-CFTB on student engagement was identified at c'=0.431, p=0.000, and 90% CI [0.308, 0.551]. A significant indirect effect of p-CFTB on student engagement was also found through self-regulated learning at a.b=0.465, p=0.000 [0.381, 0.553]. Moreover, the total effect of mediation through self-regulated learning was c=0.896, p=0.000 [0.778, 1.001]. This proved that p-CFTB indirectly affected self-regulated learning at a greater value than the direct effect. From this context, any increase in p-CFTB predicted an increase in self-regulated learning of a=0.764 (p<0.000). Meanwhile, any increase in self-regulated learning scores was significant in predicting an increase in the student engagement scores of 0.609 (p<0.000).

90 ISSN: 2089-9823

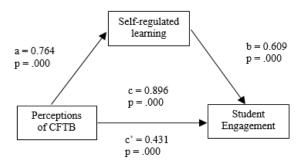


Figure 1. Mediation analysis

4. DISCUSSION

The study found that self-regulated learning can mediate the relationship between p-CFTB and student engagement (H₁ accepted). The mediation analysis showed partial mediation with the value of the indirect effect higher than the direct effect. This shows that although p-CFTB can directly affect student engagement, the effect of the mediator is greater than without going through the mediator (direct effect). The influence of self-regulated learning as a mediator has more impact on the relationship between p-CFTB and student engagement. The following provides an explanation for the examination of why self-regulated learning can function as a mediator with a higher indirect impact value than the direct effect.

First, some dimensions in the p-CFTB are related to mediators. Although no studies had evaluated the relationship between p-CFTB and self-regulated learning, some factors were also found to affect the relationship between these variables due to the p-CFTB dimensions related to self-regulated learning: independence, motivation, evaluation, and flexibility. Several studies have found that lecturer behaviors that encourage student independence are known to have a positive relationship with self-regulated learning [27], [33], [34]. Independence was one of the characteristics possessed by the students having self-regulated learning [27]. The behavior of lecturers when teaching will affect their students' independence [35]. Students with independent characteristics can regulate themselves well [27]. Student independence will be more improved when learning is done online because of the role of self-regulated learning abilities [28]. This indicated that the independence dimension greatly impacted self-regulation and was in line with the study explained students with self-regulated learning abilities could studying independently [36].

Lecturer behavior to increase motivation in the variable p-CFTB is also known to have a positive relationship with self-regulated learning [33]. Lecturer behavior contained in the instrument of p-CFTB explains how lecturers make students more motivated to learn. Students who can regulate themselves will have a strong motivation to improve academic achievement so that these students are more motivated to undergo the learning process [33]. In addition, the main components of self-regulation consist of self-regulation strategies and motivation [34]. Self-regulated learning is also one of factor assisting learning creativity development and academic performance achievement [26]. Lecturers' behavior to train students to do self-evaluation on the variable of p-CFTB [22] is known to have similarities with self-regulated learning behavior, which explains how students evaluate themselves [28]. This can be seen from the similarity of the items on the p-CFTB scale and the self-regulated learning scale [28]. The behavior of lecturers to train students to develop flexible thinking skills in the p-CFTB [22] is also related to the characteristics of students who have self-regulated learning in the form of cognitive and metacognitive abilities [24], [37].

Second, the correlation between self-regulated learning and student engagement shows the strongest correlation. This aligns with several studies that report correlations between these two variables. However, there are some differences in the correlation results between self-regulated learning and student engagement. A study in Indonesia explained there was a positive and significant correlation (r=0.262) [12]. Study in Spain also reported that the correlation between self-regulated learning and student engagement of university students was moderate (r=0.520) [25]. The positive relationship between the two variables is influenced by a person's self-regulation ability which is closely related to their cognitive engagement [17]. Student engagement during online learning is known to increase student engagement in terms of cognitive and behavioral [38].

Online learning that limits interaction between students and lecturers also causes student learning difficulties [2], [4]. Although lecturers provide opportunities to be more independent in doing assignments, if students do not understand the basic concepts of statistics, they will find it challenging to learn statistics, reducing student engagement. Students that use self-regulated learning strategies manage their study time, ask friends and lecturers for help in relearning challenging material, and improve the online learning environment [28]. Therefore, students who use various self-regulated learning strategies in online learning will have more student engagement

despite experiencing difficulties during statistics lectures. This makes the indirect effect through self-regulated learning greater than the direct effect on the relationship between p-CFTB and student engagement. This indicated new information where self-regulated learning mediated the relationship between p-CFTB and student engagement.

Third, the connection between the traits or behaviors included in p-CFTB and student engagement. The relationship between the behavior or characteristics described in CFTB and student engagement. Lecturer behavior to train student independence in the p-CFTB is known to have a positive correlation with student engagement. The dimension was also related to student engagement that the online education instruction containing independent learning increased academic involvement [39]. Giving students the chance to study independently is one of the best methods to meet their needs when it comes to learning based on their characteristics, especially considering the age range of responders in the emerging adult phase [40]. But students may not be able to explore learning if they lack confidence, are uninterested, and have a negative attitude about their capacity to learn statistics [41]. Besides improving independence, the existence of behavior in increasing student motivation in p-CFTB, which has a positive correlation with student engagement [42]. A link was observed between teachers' creative teaching which increased student engagement in elementary school students [19]. The present study closely supported this, where a positive correlation was found between p-CFTB and student engagement in higher education.

5. CONCLUSION

According to the study, self-regulated learning can partially mediate the relationship between p-CFTB and student engagement. The value of the indirect effect through the mediator of self-regulated learning is greater than the direct effect. This demonstrates that student engagement in statistics courses is higher when students have self-regulated learning abilities than when they are not able to do so. Future research is expected to use measurement tools specific to online learning, measurement methods other than self-report, and the need to conduct intervention research to determine the effect of CFTB on student engagement. Researchers also recommend that lecturers help students to develop self-regulated learning skills, particularly in statistics. Lecturers also need to show creativity-fostering behavior that can improve self-regulated learning skills. In addition, universities are expected to be able to pay attention to factors that can influence CFTB in lecturers. This is because lecturers with CFTB will positively correlate with student engagement so that more efficient learning can occur.

FUNDING INFORMATION

The authors are grateful to Universitas Indonesia for financially supporting the study through the research grant of *Publikasi Terindeks Internasional (PUTI)* 2022 with contract number NKB297/UN2.RST/HKP.05.00/2022.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	E	Vi	Su	P	Fu
Maridha Normawati	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	
Frieda Maryam	✓	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	✓	\checkmark		
Mangunsong Siahaan														
Rose Mini Agoes Salim	✓	✓		✓	✓					\checkmark		\checkmark		\checkmark
Shahnaz Safitri		✓	✓	✓	✓					\checkmark		\checkmark		
Astri Setiamurti		\checkmark	✓	\checkmark			✓	\checkmark		\checkmark			\checkmark	
Atikah Ainun Mufidah		✓	✓	\checkmark			✓	✓		✓				

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study.

ETHICAL APPROVAL

The approval to commence the experiment was obtained from the ethical review team of the Faculty of Psychology, Universitas Indonesia number 136/FPsi.Komite Etik/PDP.04.00/2022.

DATA AVAILABILITY

The data that support the findings of this study are available on request from the corresponding author, [MN]. The data, which contain information that could compromise the privacy of research participants, are not publicly available due to certain restrictions.

REFERENCES

- [1] Z. Dembereldorj, "Exploring online student engagement during COVID-19 pandemic in Mongolia," *International Journal of Higher Education*, vol. 10, no. 7, pp. 10–18, 2021, doi: 10.5430/ijhe.v10n7p10.
- [2] B. Hollister, P. Nair, S. Hill-Lindsay, and L. Chukoskie, "Engagement in online learning: student attitudes and behavior during COVID-19," in Frontiers in Education, 2022, vol. 7, p. 851019, doi: 10.3389/feduc.2022.851019.
- [3] B. A. McKenna, C. Horton, and P. M. Kopittke, "Online engagement during COVID-19: comparing a course previously delivered traditionally with emergency online delivery," *Human Behavior and Emerging Technologies*, vol. 2022, no. 1, p. 6813033, 2022, doi: 10.1155/2022/6813033.
- [4] Y. Xia, Y. Hu, C. Wu, L. Yang, and M. Lei, "Challenges of online learning amid the COVID-19: college students' perspective," Frontiers in Psychology, vol. 13, p. 1037311, 2022, doi: 10.3389/fpsyg.2022.1037311.
- [5] B. W. Hunt, T. Mari, G. Knibb, P. Christiansen, and A. Jones, "Statistics anxiety and predictions of exam performance in UK psychology students," *PLoS One*, vol. 18, no. 8, p. e0290467, Aug. 2023, doi: 10.1371/journal.pone.0290467.
- [6] T. Prayoga and J. Abraham, "A psychological model explaining why we love or hate statistics," *Kasetsart Journal of Social Sciences*, vol. 38, no. 1, pp. 1–8, 2017, doi: 10.1016/j.kjss.2016.08.013.
- [7] F. Martin and D. U. Bolliger, "Engagement matters: student perceptions on the importance of engagement strategies in the online learning environment," *Online Learning Journal*, vol. 22, no. 1, pp. 205–222, 2018, doi: 10.24059/olj.v22i1.1092.
- [8] J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris, "School engagement: potential of the concept, state of the evidence," *Review of Educational Research*, vol. 74, no. 1, pp. 59–109, 2004, doi: 10.3102/003465430740010.
- [9] T. Konold, D. Cornell, Y. Jia, and M. Malone, "School climate, student engagement, and academic achievement: a latent variable, multilevel multi-informant examination," *AERA Open*, vol. 4, no. 4, pp. 1–17, 2018, doi: 10.1177/2332858418815661.
- [10] J. Maroco, A. L. Maroco, J. A. D. B. Campos, and J. A. Fredricks, "University student's engagement: development of the university student engagement inventory (USEI)," *Psicologia: Reflexão e Crítica*, vol. 29, no. 1, p. 21, 2016, doi: 10.1186/s41155-016-0042-8.
- [11] W. Elshami, M. H. Taha, M. E. Abdalla, M. Abuzaid, C. Saravanan, and S. Al Kawas, "Factors that affect student engagement in online learning in health professions education," *Nurse Education Today*, vol. 110, p. 105261, 2022, doi: 10.1016/j.nedt.2021.105261.
- [12] S. Setiani and E. Wijaya, "The relationship between self-regulated learning with student engagement in college students who have many roles," in *Proceedings of the 2nd Tarumanagara International Conference on the Applications of Social Sciences and Humanities (TICASH 2020)*, 2020, pp. 307–312, doi: 10.2991/assehr.k.201209.045.
- [13] J. Xu and X. Qiu, "The influence of self-regulation on learner's behavioral intention to reuse e-learning systems: a moderated mediation model," *Frontiers in Psychology*, vol. 12, p. 763889, 2021, doi: 10.3389/fpsyg.2021.763889.
- [14] M. Singh, P. S. James, H. Paul, and K. Bolar, "Impact of cognitive-behavioral motivation on student engagement," *Heliyon*, vol. 8, no. 7, p. e09843, 2022, doi: 10.1016/j.heliyon.2022.e09843.
- [15] C. M. Amerstorfer and C. F. von Münster-Kistner, "Student perceptions of academic engagement and student-teacher relationships in problem-based learning," Frontiers in Psychology, vol. 12, p. 713057, Oct. 2021, doi: 10.3389/fpsyg.2021.713057.
- [16] E. M. Almarghani and I. Mijatovic, "Factors affecting student engagement in HEIs it is all about good teaching," *Teaching in Higher Education*, vol. 22, no. 8, pp. 940–956, 2017, doi: 10.1080/13562517.2017.1319808.
- [17] M. Bond and S. Bedenlier, "Facilitating student engagement through educational technology: towards a conceptual framework," Journal of Interactive Media in Education, vol. 2019, no. 1, pp. 1–14, 2019, doi: 10.5334/jime.528.
- [18] E. Zhu, "Interaction and cognitive engagement: an analysis of four asynchronous online discussions," *Instructional Science*, vol. 34, no. 6, pp. 451–480, 2006, doi: 10.1007/s11251-006-0004-0.
- [19] A. Setiawan, A. Munir, and Suhartono, "Students' engagement in EFL class through creative teaching," *Jurnal Education and Development*, vol. 7, no. 3, pp. 26–30, 2019, doi: 10.37081/ed.v7i3.1143.
- [20] A. Setyawati, S. Wijaya, and D. C. Widjaja, "Effect of student's perception of learning innovation on student engagement and student satisfaction," *Petra International Journal of Business Studies*, vol. 5, no. 2, 2022, doi: 10.9744/ijbs.5.2.198-205.
 [21] A. J. Cropley, "Fostering creativity in the classroom: general principles," in *The Creativity Research Handbook*. M. Runco Ed.,
- [21] A. J. Cropley, "Fostering creativity in the classroom: general principles," in *The Creativity Research Handbook*. M. Runco Ed., Cresskill, NJ: Hampton Press, pp. 83–114.
- [22] K. C. Soh, "Indexing creativity fostering teacher behavior: a preliminary validation study," *Journal of Creative Behaviour*, vol. 34, no. 2, pp. 118–134, 2000, doi: 10.1002/j.2162-6057.2000.tb01205.x.
- [23] F. M. Leo, A. Mouratidis, J. J. Pulido, M. A. Lopez-Gajardo, and D. Sanchez-Oliva, "Perceived teachers' behavior and students' engagement int physical education: the mediating role of basic psychological needs and self-determined motivation," *Physical Education and Sport Pedagogy*, vol. 27, no. 1, pp. 59–76, 2022, doi: 10.1080/17408989.2020.1850667.
- [24] B. J. Zimmerman, "Investigating self-regulation and motivation: historical background, methodological developments, and future prospects," *American Educational Research Journal*, vol. 45, no. 1, pp. 166–183, 2008, doi: 10.3102/0002831207312909.
- [25] A. B. Bernardo, C. Galve-González, J. C. Núñez, and L. S. Almeida, "A path model of university dropout predictors: the role of satisfaction, the use of self-regulation learning strategies and students' engagement," Sustainability, vol. 14, no. 3, p. 1057, 2022, doi: 10.3390/su14031057.

- A. Zielińska, I. Lebuda, D. M. Jankowska, and M. Karwowski, "Self-regulation in creative learning: agentic perspective," Creativity, vol. 8, no. 1, pp. 52-71, 2021, doi: 10.2478/ctra-2021-0005.
- K. Saks and Ä. Leijen, "Distinguishing self-directed and self-regulated learning and measuring them in the e-learning context," Procedia-Social and Behavioral Sciences, vol. 112, pp. 190-198, 2014, doi: 10.1016/j.sbspro.2014.01.1155.
- [28] L. Barnard, W. Y. Lan, Y. M. To, V. O. Paton, and S. L. Lai, "Measuring self-regulation in online and blended learning environments," The Internet and Higher Education, vol. 12, no. 1, pp. 1-6, 2009, doi: 10.1016/j.iheduc.2008.10.005.
- Â. S. Azevedo, P. C. Dias, A. Salgado, T. Guimarães, I. Lima, and A. Barbosa, "Teacher student relationship and self-regulated learning in Portuguese sompulsory education," Paideia, vol. 22, no. 52, 2012, doi: 10.1590/S0103-863X2012000200006.
- I. R. Lee and K. Kemple, "Preservice teachers' personality traits and engagement in creative activities as predictors of their support for children's creativity," Creativity Research Journal, vol. 26, no. 1, pp. 82-94, 2014, doi: 10.1080/10400419.2014.873668.
- L. T. Hu and P. M. Bentler, "Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives," Structural Equation Modeling: A Multidisciplinary Journal, vol. 6, no. 1, pp. 1-55, 1999, doi: 10.1080/10705519909540118.
- [32] T. Mutiara and T. Rifameutia, "Adapting self-regulation measurement tools in learning boldly," (in Indonesian), Edcomtech Jurnal Kajian Teknologi Pendidikan, vol. 6, no. 2, pp. 301-309, 2021, doi: 10.17977/um039v6i12021p301.
- [33] B. J. Zimmerman, "Self-regulated learning and academic achievement: an overview," Educational Psychologist, vol. 25, no. 1,
- pp. 3–17, 1990, doi: 10.1207/s15326985ep2501_2.

 T. Erdogan and N. Senemoglu, "Development and validation of a scale on self-regulation in learning (SSRL)," *SpringerPlus*, vol. 5, no. 1, p. 1686, 2016, doi: 10.1186/s40064-016-3367-y.
- [35] C. Dignath-van Ewijk and G. van der Werf, "What teachers think about self-regulated learning: investigating teacher beliefs and teacher behavior of enhancing students' self-regulation," Education Research International, vol. 2012, no. 1, p. 741713, 2012, doi: 10.1155/2012/741713.
- Sukowati, E. K. E. Sartono, and G. I. Pradewi, "The effect of self-regulated learning strategies on the primary school students' independent learning skill," Psychology, Evaluation, and Technology in Educational Research, vol. 2, no. 2, pp. 81-89, 2020, doi: 10.33292/petier.v2i2.44.
- E. Panadero, "A review of self-regulated learning: six models and four directions for research," Frontiers in Psychology, vol. 8, p. 422, Apr. 2017, doi: 10.3389/fpsyg.2017.00422.
- R. Anjarwati and L. Sa'adah, "Student learning engagement in the online class," EnJourMe (English Journal of Merdeka): Culture, Language, and Teaching of English, vol. 6, no. 2, pp. 39-49, 2021, doi: 10.26905/enjourme.v6i2.6128...
- [39] K. Mulqueeny, V. Kostyuk, R. S. Baker, and J. Ocumpaugh, "Incorporating effective e-learning principles to improve student engagement in middle-school mathematics," International Journal of STEM Education, vol. 2, no. 1, p. 15, 2015, doi: 10.1186/s40594-015-0028-6.
- L. A. King, The science of psychology: an appreciative view, 4th ed. New York: Mc Graw Hill Education, 2017.
- M. Dempster and N. K. McCorry, "The role of previous experience and attitudes toward statistics in statistics assessment outcomes among undergraduate psychology students," *Journal of Statistics Education*, vol. 17, no. 2, pp. 1–7, 2009, doi: 10.1080/10691898.2009.11889515.
- F. Nayir, "The relationship between student motivation and class engagement levels," Eurasian Journal of Educational Research, no. 71, pp. 59-78, 2017, doi: 10.14689/ejer.2017.71.4.

BIOGRAPHIES OF AUTHORS

Maridha Normawati o 🖫 🚾 🕻 is a master graduate of psychological science with major in educational psychology at Faculty of Psychology, Universitas Indonesia. She used to work as primary teacher at SDK Wunlah Tanimbar Regency Maluku (Pengajar Muda Indonesia Mengajar), and SD Insan Cendekia Madani BSD Serpong. She currently works as primary teacher at Sekolah Murid Merdeka. She is interested in educational psychology and research issues such as creative teaching, teacher training, special needs children, inclusive education, learning and teaching effectiveness. She can be contacted at email: maridha.normawati@gmail.com or maridha.normawati01@ui.ac.id.

Frieda Maryam Mangunsong Siahaan (1) State is a professor at Faculty of Psychology, Universitas Indonesia. Her topic interests are educational psychology issues which focus on inclusive education, special needs children, marginal community, psychosocial training for teachers and students in the disaster and conflict areas, creative teaching, and research on education. She is joined in the research group of teacher and student effectiveness at Faculty of Psychology, Universitas Indonesia. She can be contacted at email: friemang@ui.ac.id.

Rose Mini Agoes Salim is a professor at Faculty of Psychology, Universitas Indonesia. Her topic interests are educational psychology issues which focus on early childhood education, creative teaching, and research on education. She is the head of Teacher and Student Effectiveness Research Group at Faculty of Psychology, Universitas Indonesia. She can be contacted at email: romyap@ui.ac.id.

Shahnaz Safitri si sa lecturer at Faculty of Psychology, Universitas Indonesia. She is PhD candidate at Purdue University. Her topic interests are gifted, creative, and talented education, teaching, and learning. She is joined in the Teacher and Student Effectiveness Research Group at Faculty of Psychology, Universitas Indonesia. She can be contacted at email: shahnazsafitri@ui.ac.id.

Astri Setiamurti setiamurti. Setiamurti setiamurti setiamurti. Setiamurti setiamurti. Setiamurti.

Atikah Ainun Mufidah see is currently a lecturer at the Faculty of Psychology, Universitas Negeri Jakarta. Her research interests are on educational psychology, specifically the role of families and teachers in promoting learning achievement. Her interests include empathy, parental involvement, and creative teaching. She can be contacted at email: atikah.ainun@unj.ac.id.