The development direction and challenges of STEM integration: a systematic literature review

Zhang Lei¹, Nur Atiqah Jalaludin¹, Mohamad Sattar Rasul¹, Mohamad Hidir Mhd Salim²

¹STEM Enculturation Research Centre, Faculty of Education, Universiti Kebangsaan Malaysia, Selangor, Malaysia ²Institute of Visual Informatics, Faculty of Education, Universiti Kebangsaan Malaysia, Selangor, Malaysia

Article Info

Article history:

Received Jun 4, 2024 Revised Dec 12, 2024 Accepted Mar 19, 2025

Keywords:

Curriculum integration
Directions and challenges
STEM
STEM education
STEM integration
Systematic literature review

ABSTRACT

The development of society has put forward higher requirements for K-12 talent cultivation. However, some situations are not optimistic, such as students' low interest in mathematics, science and other disciplines, and the subject setting cannot match the needs of talent cultivation. Numerous studies confirmed that in the context of curriculum integration, further integration of science, technology, engineering, and mathematics (STEM) curriculum, learning methods and other aspects is needed, but there are still few summaries of the development direction and approaches of STEM in the context of STEM integration. This paper focuses on STEM integration, to clarify the development direction and approaches of STEM integration in the context of education reform, and then systematically summarize the development and existing problems of STEM integration education with a systematic literature review (SLR) method, 62 articles from 2013-2023 were finally selected from Web of Science (WoS). This study reveals the development of STEM curriculum, STEM pedagogy and models in STEM integration, attaches importance to the concept of interdisciplinary integration, advocates curriculum integration and improves students' 21st century skills by integrating. In addition, there needs to be more research focusing on the internal impacts of learning outcomes, STEM literacy, and student STEM identity.

This is an open access article under the CC BY-SA license.

22

Corresponding Author:

Nur Atiqah Jalaludin

STEM Enculturation Research Centre, Faculty of Education, Universiti Kebangsaan Malaysia

Bangi, Selangor, 43600, Malaysia

Email: nuratiqah.jalaludin@ukm.edu.my

1. INTRODUCTION

Since the 21st century, the development of technology and advances in information technology have led to considerable interest in science, technology, engineering, and mathematics (STEM) education in countries around the world, there are increasing calls for the teaching of STEM within interdisciplinary settings, as a way of engaging students in authentic tasks and innovation [1], but more in terms of the development of separate STEM disciplines [2], like science, physics, and mathematics, but in recent years, the development of artificial intelligence (AI), big data, cloud computing, the internet of things (IoT) and other emerging industries have gradually recognized the importance of STEM integration in the context of talent training, and the development of society has brought about an increase in demand for comprehensive, complex talent [3], and STEM education has been shown to be effective in enhancing students' complex problem solving skills and has also been shown to be beneficial for career development [4]. Across the field of education, there has been an explosion of scholarly and educator research on STEM education [2]. Higher education has been exploring

STEM education models to find a way to restructure curriculum instruction, elementary schools are also trying to modify their curriculum to bring students' learning closer to real-world scenarios.

The earliest argument about STEM education was actually a perceived threat to national security in the United States from the Soviet Union, and in satellite related areas, the U.S. proposed a major effort to develop science and technology to meet the challenge posed by the Soviet Union, then the concept of STEM was proposed. Some scholars point out that the acronym "STEM" stands for a purposeful integration of individual disciplines as used in solving real-world problems [5], [6]. After nearly 40 years of development, in the last two decades, the U.S. has continued to reform its STEM model by proposing a framework for STEM education based on the STEM concepts, clarifying the consensus understanding of STEM integration, provided the first integrated STEM curriculum resources covering K-12 levels, mapping STEM curriculum roadmap, and providing a STEM implementation at the classroom level curriculum routes to support the systematic transformation of STEM integration approaches. At the same time, data-driven STEM learning and evaluation are used to develop effective STEM curriculum programs and a professional development (PD) framework for STEM teachers, to promote reform of STEM integration curriculum implementation and teaching methods, and train students to use STEM knowledge to solve real-world problems [7], to improve innovation, critical thinking, problem-solving skills, and develop 21st century skills [8].

Worldwide, in addition to the United States, other countries or regions are also doing different reforms in the STEM field. For example, in China, government and education policy makers include STEM education in national and long-term education development goals [9], [10], and recently in 2023, UNESCO has established the international institute for STEM education (UNESCO IISTEM) in China, which is also the tenth category 1st center established by UNESCO in the world and bears the heavy responsibility for the global development of STEM education [11], shows that attaching importance to the development of STEM education, accelerating the training of scientific and technological innovation talents, helping citizens acquire skills and literacy to adapt to future social. For an instance, in the action plan of education informatization 2.0, the ministry of education (MoE) stressed that AI and computer programming courses should become compulsory in primary and secondary school education and need to be included in academic level examination [12]; in the UK, a STEM strategy group has been set up, including the government, with representatives from various levels, including ministers and civil servants, as well as representatives from various disciplinary associations and academic societies [13]; in Germany, STEM education has been mentioned many times in government reports, and it is clear to strengthen STEM education in all stages of German education and develop STEM education in schools [14]; in Japan, the government requires STEM education at the elementary and secondary school levels to focus relatively on the cultivation of STEM research-oriented talents, increase students' interest and enthusiasm in STEM-related subjects, and strengthen STEM elite education at the high school level [15]. In Malaysia, recognizing that enrollment in STEM majors is a concern, the MoE and the ministry of science, technology, and innovation (MOSTI) launched the STEM strategic plan to increase student enrollment in STEM majors to build a STEM literacy society, a high-quality and sufficient workforce [16], [17]. More countries and regions have realized the importance of STEM education for talent training and national development.

In fact, since the emergence of the STEM concept, there have been various definitions of STEM education in academic. Up to now, no consensus has been reached, but many scholars and institutions hold the view of STEM integration [18]. They believe that the essence of STEM education is to discover the intrinsic connections between subject knowledge, and that the most important concept is integration (integrated STEM or STEM integration). This is why, as of now, the further integration of the STEM narrative in different countries and regions has resulted in the emergence of STEAM (add A, art), STEMM (add M, medicine), applied mathematics, science, engineering and entrepreneurship (AMSEE), STIM ("1" means informatics), STREM (add R, reading), GEMS (focus on girls STEM), BEMS (focus on boys STEM) [19]. This also reflects the different understanding and needs of STEM in different countries. Therefore, different needs of STEM are adjusted according to their own situations under the general framework. However, in view of these extensions, STEM is still in the context of integration in general.

So, this study aimed at identifying the dimensions of STEM integration, reveals somes development situations and challenges to explore it is directions. There has been a lot of debate regarding the discussion on STEM integration and practices. Therefore, the corresponding research questions are: i) what aspects of research related to STEM integration? and ii) what does STEM integration situations in those main aspects?

2. METHOD

This review was conducted using the systematic review method. According to Mengist's *et al.* [20] research, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) method includes the following two main phases: screening and inclusion. This review utilizes the PRISMA guidelines, in order to be included in this review, for higher reliability and validity, studies needed to be

24 □ ISSN: 2089-9823

peer-reviewed and finish published in Web of Science (WoS). Eligible articles also need to be published in English with K-12 education. And the search has limited the research to journal articles between 2013 to 2023. To maximize the replicability of our search strategy, we choose to only include research published in WoS journals. In the first phase, following this process, and related research studies were searched by using various combinations of the keywords 'STEM', 'STEM education', 'STEM integration', 'integrative STEM', 'STEM integrated', among these records we found 394 articles, and after 309 unrelated were removed, we were left with 85 articles might be related to current study for further screening.

In the second phase, duplicates were excluded, and the articles were reviewed to determine whether the studies were suitable for the current study, by examining the abstract, against certain criteria. These criteria were: i) being related with STEM; ii) including the process of K-12 in school; and iii) being peer-reviewed articles. Finally, after manual screening, 62 research studies were included. The articles selected were read by researchers and their aims, procedures and results were presented. These articles selected depending on some common characteristics, such as, how do teachers carry out STEM courses in the classroom, the integrated approach of STEM courses, the learning methods of students, the outcomes of STEM learning. Figure 1 shows these 3 selection processes and results.

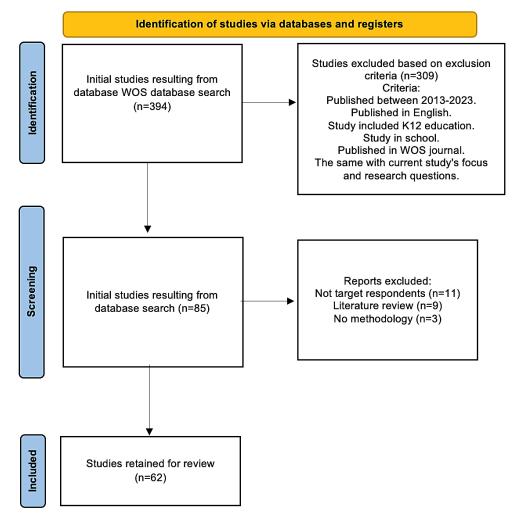


Figure 1. PRISMA flow chart identification of studies via databases

3. RESULTS AND DISCUSSION

3.1. Results

When analyzing the publication years of the 62 retained articles, an interesting phenomenon emerged, even though STEM education was proposed almost 40 years ago, there has been a noticeable increase in research interest in this area recently. Out of the chosen articles, 38 were published in the past three years. The surge in

publications that has occurred recently suggests that STEM education has become much more prominent worldwide and that its significance in the current educational environment is being acknowledged.

In order to guarantee the excellence and inclusivity of every article, a thorough rubric was employed, evaluating seven specific criteria: objectives, review of the literature, framework, participants, methods, results and conclusions, and significance [21]. The research was condensed and amalgamated into 6 distinct groups, shows in Table 1. The initial category, comprising 12 studies, centers on STEM curriculum and investigates the incorporation of diverse disciplines within the framework of curriculum integration. It examines how each subject contributes to the STEM learning process and analyzes strategies for interdisciplinary learning. The second and third center around pedagogical techniques in STEM education and learning projects that are backed by methodologies such as problem-based learning (PBL), engineering-design learning (EDL), and game-based learning (GBL), these methods effectively enhance students' research skills. The fourth category consists of 15 research on STEM models, with a focus on student-centered learning activities such as project-based learning (PjBL) and innovative learning models. The fifth category, comprising of 4 research, underscores the crucial role of teachers in the incorporation and advancement of STEM curriculum, emphasizing their important contributions to the instructional process. The last category comprises four studies that examine assessment systems in interdisciplinary STEM integration, evaluating the efficacy of various evaluation approaches. This study especially examines the STEM curriculum, STEM pedagogy, and STEM models to investigate the directions and ways for development in these three areas of STEM integration.

Based on findings, we can categorize the modules and processes that are part of STEM integration in the K-12 stage. The framework is composed of 6 components: teacher, project, pedagogy, model, curriculum, and evaluation, with K-12 students being the focal point from the students' perspective. From an educational perspective, these modules precisely constitute a closed loop of teaching and learning, as depicted in Figure 2. This essay will explore the concepts of STEM curriculum, STEM pedagogy and STEM model.

	Table 1. Results of in	itial search			
Category	Objective	Database	Quantity		
1	STEM curriculum (SC)	WoS	12		
2	STEM pedagogy (SP)	WoS	22		
3	STEM project (SPj)	WoS	14		
4	STEM model (SM)	WoS	15		
5	STEM teacher (ST)	WoS	4		
6	STEM evaluation (SE)	WoS	4		

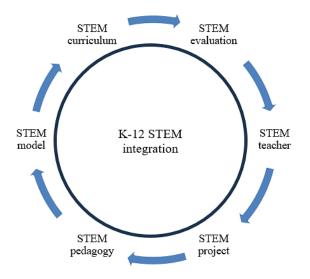


Figure 2. Framework of K-12 STEM integration

3.1.1. STEM integration articles related to STEM curriculum

Although there is still lack of accepted definitions of STEM integration, crossing disciplinary boundaries is the main feature of STEM integration [21]. We try to understand STEM integration from different perspectives, from its composition structure, there are several important dimensions in STEM field, among which curriculum integration is the most important. The information that can be obtained from Table 2 is that, 12 studies discussed

26 ☐ ISSN: 2089-9823

the STEM curriculum, 5 of them also discussed STEM evaluation, projects or teacher. This part discusses teaching exploration and practice of integrating curriculum design iteration into STEM curriculum. The development direction of STEM curriculum must be interdisciplinary, and the process of integrating curriculum design into curriculum development is constantly iterated and improved, some papers provide a conceptual framework for STEM integration activities and guidelines, and some give suggestions on how to design courses without losing the integrity of the discipline, and some talk about trying to integrate the content of different disciplines, different design methods, different learning methods, so as to achieve the improvement of students' knowledge skills, 21st century skills, emotional attitudes, and other aspects [22]. And there are also research contributes to conceptualizing how interdisciplinary processes that enable synergistic interweaving of disciplines and how curriculum processes can be effectively framed and enacted [23].

Table 2. Articles related to STEM curriculum

Author	Main objectives	Brief description						
Ring-Whalen et al.	SC	To investigate the conceptions of integrated STEM curriculum held by in-service science						
[24]		teachers.						
Aldemir et al. [25]		Integration of neural engineering curriculum in high school to support STEM learning.						
Aranda et al. [26]		In engineering design and science courses, teachers and students integrate STEM curriculum.						
Fornsaglio et al.		STEM curriculum generated student grouping strategies to assess their impact on student						
[27]		understanding of science concepts, learning perceptions, and attitudes toward science.						
Bedada and		The teaching effect of integrating GeoGebra into STEM curriculum to learn mathematical						
Machaba [28]		knowledge.						
Guzey and Li [29]		The impact of student behavioral engagement and career eliculation on Achievement in						
		STEM curriculum.						
Garner et al. [30]	SC and SPj	STEAM curriculum that integrates art and socio-emotional learning content enhance students' interest.						
Reynante et al. [31]	SC	By analyzing the K-12 STEM learning standards document, identified eight interdisciplinary thematic STEM curriculum.						
Zhang et al. [32]	SC	STEM teacher experiences and challenges in implementing the invention education curriculum.						
Petrosino et al. [33]	SC and SE	Differences in implementation and evaluation of engineering integration curriculum in junior high school.						
Park and Cho [34]	SC and ST	STEAM curriculum integrating history and STEM integration, to analysis students' historical identity.						
Ryan et al. [35]	SC	Integrate science and engineering curriculum through their core ideas and practices						
m .1 . 7 . [0.03]		dimensions.						
Tytler et al. [23]		Analyzes interdisciplinary STEM curriculum, reveals the design characteristics of						
Y V1	GG 1 GD:	collaborative interweaving of STEM subjects.						
Juškevičienė <i>et al</i> .	SC and SPj	The combination of maker lab and physics in STEAM education provides a						
[22]	CC 1 CE	comprehensive STEM curriculum.						
Chiang et al. [9]	SC and SE	Investigate the effect of an integrated STEM curriculum on children's attitudes and						
		engineering design skills.						

The studies on STEM curriculum reveals a diverse array of approaches and focus areas, several examined the integration of various disciplines within STEM education. Ring-Whalen et al. [24] explored in-service science teachers' conceptions of integrated STEM curriculum, while Aldemir et al. [25] investigated the integration of neural engineering curriculum in high schools, and Aranda et al. [26] focused on integrating STEM in engineering design and science courses, other studies assessed the impact of innovative teaching strategies and tools. Fornsaglio et al. [27] evaluated the impact of student grouping strategies on science learning, Bedada and Machaba [28] analyzed the use of GeoGebra for teaching mathematical concepts, and Tytler et al. [23] examined the collaborative design of interdisciplinary STEM curricula. The role of student engagement and attitudes was highlighted by Guzey and Li [29], who studied the effects of engagement and career-focused activities on STEM achievement, and Chiang et al. [9], who assessed the impact of STEM curricula on children's attitudes and engineering skills. Furthermore, studies by Garner et al. [30] and Juškevičienė et al. [22] focused on integrating art and socio-emotional learning into STEM (STEAM) and combining maker labs with physics, respectively. Additionally, Reynante et al. [31] identified interdisciplinary themes within K-12 STEM standards, while Zhang et al. [32] detailed teachers' experiences with invention education curricula. Petrosino et al. [33] compared implementation methods for engineering curricula in junior high schools, and Park and Cho [34] explored integrating history with STEM to enhance students' historical identity. These studies collectively highlight the evolving landscape and multifaceted nature of STEM curriculum integration, emphasizing interdisciplinary approaches, innovative methods, and the critical roles of teachers and student engagement.

The results indicate that the integration aspect of the STEM curriculum exhibits a wide range of variations. Within the framework of multidisciplinary and multi-disciplinary integration, STEM disciplines expand beyond STEM to include STEAM, STEM+N, where N encompasses not just humanities and social sciences. It also integrates disciplines such as medical engineering, laboratory fabrication in physics, and history within the STEAM framework. Based on the integration of STEM principles, we have developed a conceptual framework for the STEM integration curriculum. This framework, referred to as the dimensions of STEM integration curriculum, is illustrated in Figure 3.

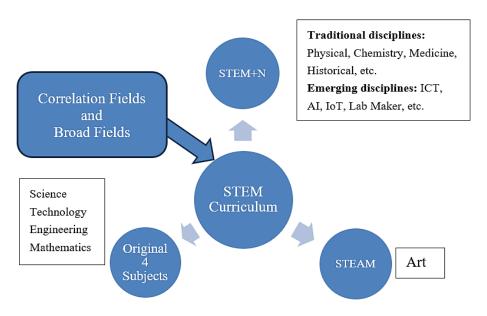


Figure 3. Subject dimensions of STEM intergration curriculum

3.1.2. STEM integration articles related to STEM pedagogy

Leung [36] identified STEM pedagogy as a pedagogical system in which different STEM components impact with each other under the learning environment. Learning approaches which STEM pedagogy focus on in Table 3 reveals that out of the 62 journal papers, the highest proportion, consisting of 22 studies, focuses on STEM pedagogy. Among researchers primarily examine learning methods such as PBL (PrBL or PjBL), EDL, inquiry-based learning (IBL), and GBL. These methods are closely related to educational research and emphasize the integration of STEM pedagogy based on STEM curriculum. The reviewed studies on STEM curriculum integration reveal various pedagogical approaches and their impacts on student learning and engagement. Several studies focused on EDL. In [37]-[41] examined EDL's role in integrating STEM disciplines, improving student learning outcomes, and assessing STEM mastery. Lie et al. [42] emphasized the importance of design within EDL. Siverling et al. [43] further explored combining EDL with EBR. PjBL was another common focus, with Wieselmann et al. [44], Lynch et al. [45], Lee et al. [46], and Belland et al. [47] investigating its effects on student engagement, cognitive development, and interest in STEM careers. Navy and Kaya [48] looked at PrBL's application in primary schools, and other pedagogical approaches included design learning (DL) by Karahan et al. [49], active learning (AL) by Gonzales et al. [50], and gamebased learning (GBL) by Moore et al. [51]. Additionally, Chung and Li [52] integrated issues-based art education (IBAE) to emphasize inquiry and real-world learning, while Cruz-Sandoval et al. [53] used competency-based learning (CBL) to emphasizes knowledge, attitudes, and skills to make informed decisions and meet professional challenges effectively. These studies collectively highlight the effectiveness of diverse methodologies in enhancing STEM pedagogy integration and improving student learning outcomes.

STEM Pedagogy can be categorized into two aspects based on learning styles: student-centered learning and teacher-centered learning, shows in Figure 4. In the present STEM classroom environment, the previous teacher-centered method is rapidly being superseded by the student-centered learning model. Researchers and scholars have employed many STEM learning styles, such as PjBL, PrBL, project-oriented problem-based learning (POPBL), IBL, DL, and AL. Among them, PBL (including PjBL and PrBL), POPBL, IBL, and DL are the most widely utilized.

ISSN: 2089-9823 28

Table 3. Articles related to STEM pedagogy

Main

SP (CBL)

SM and SP

(EDL)

SP (EDL and

EBR)

Author

Cruz-Sandoval et

Baker and Galanti

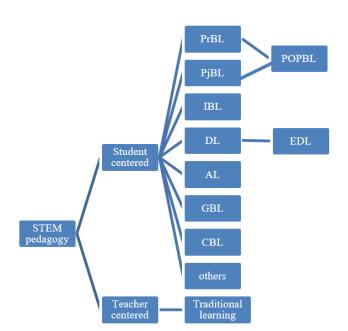
Siverling et al.

[52]

[57]

[43]

al. [53]


ı ves	Brief description
DL)	To assess the impact of EDL basic science courses on student learning outcomes an attitudes.
	The impact of EDL basic science courses on the learning and achievement of the K12 student population.

CBL pedagogy to enhance integration of knowledge, attitudes, and skills, enabling

individuals to make informed decisions and meet professional challenges effectively. MEAs serve as a STEM model to help mathematics teachers build a vision of STEM

rumor	objectives	Bilet description
Guzey et al. [38]	SP (EDL)	To assess the impact of EDL basic science courses on student learning outcomes and attitudes.
Guzey et al. [39]		The impact of EDL basic science courses on the learning and achievement of the K12
		student population.
Johnston et al.		Using engineering to integrate science and mathematics in the STEM integration unit of
[40]		EDL to help students in engineering practice.
Mathis et al. [41]		Students use science and math concepts in integrated STEM unit on the foundations of EDL, demonstrating that EDL pedagogy curriculum assesses students' STEM mastery.
Lie et al. [42]		Design concepts of students participating in STEM unit of EDL foundation, clear the
		importance of design in integration process.
Siverling et al.		In STEM integration unit, students integrate all STEM disciplines while demonstrating
[43]		designs, supporting engineering design fundamentals as a curriculum pedagogy.
Wieselmann et al.	SP (PjBL)	Analyze different STEM PBL curriculum units at K12 stage and explore the learning
[44]		effects of integrating PBL into STEM at different stages.
Lynch <i>et al.</i> [45]		Improve STEM skills through PjBL, technology integration, and robust STEM courses.
Lee <i>et al</i> . [46]		To confirm the influence of STEM PBL pedagogy on students 'emotional engagement in mathematics.
Belland et al. [47]	SP (PrBL)	Increase student cognitive engagement and introduce interesting STEM careers by integrating STEM PBL into the mathematics curriculum.
Navy and Kaya [48]		Explore the application of STEM PBL pedagogy developed by teachers integrating STEM subjects in primary schools.
Karahan <i>et al</i> . [49]	SP (DL)	Explore the influence of STEM integrated media DL pedagogy on students' attitudes towards science and technology courses.
Gonzales et al.	SP (AL)	Explore the possibility of STEM integration courses and providing STEM opportunities
[50]		for students through the implementation of STEM AL.
Moore et al. [51]	SM and SP	Implementation of a STEM+C model integrating pictures and engineering design in early
	(PjBL)	childhood classrooms.
Li et al. [54]		A STEAM model that addresses the problem of insufficient STEM teachers and STEM integration through collaboration and PjBL.
Way et al. [55]		A three-level STEM Model helps teachers and students build STEM skills, design
		processes, and integrated STEM programs.
McHugh et al. [56]		The impact of the STEM MISP model on students' science knowledge, problem-solving
		skills, and math attitudes.
Chung and Li	SP (IBAE)	Integrate IBAE into STEM emphasizes inquiry, real world learning, and critical thinking through IBAE nedagogy.

through IBAE pedagogy.

Eexplore the use of EBR in EDL STEM integration units.

Figure 4. Dimensions of STEM pedagogy

3.1.3. STEM integration articles related to STEM model

The reviewed studies on STEM models explore diverse approaches and their impacts. Gencer et al. [58] and Eğitimi et al. [59] focus on theoretical integration strategies and the shift towards innovative, integrated models. Gale et al. [60] delve into key components and specific implementation cases within STEM models, including the INSPIRES curriculum, which emphasizes biology and technology education. Waterman et al. [61] and Araya et al. [62] integrate computational thinking and machine learning into STEM courses, bolstering data analysis and modeling skills. Quigley et al. [63] and Ortiz-Revilla et al. [64] examine problem-based instruction models and their impact on civic education. Tijaro-Rojas et al. [65] adopt a systematic and integrative sequence approach in physics education. Baker and Galanti [57] utilize mathematical modeling activities (MEAs) to foster STEM integration in mathematics education. Way et al. [55] and Lu et al. [66] introduce multi-level STEM models and project-based learning (PjBL) strategies to nurture STEM skills and creativity. McHugh et al. [56] evaluate the impact of the STEM MISP model on science knowledge and problem-solving skills. Moore et al. [51] and Li et al. [54] address teacher shortages and early childhood education through collaborative STEAM models and integrated STEM+C approaches. Collectively [51], [54], these studies highlight the diverse strategies and significant benefits of various STEM models in improving educational outcomes.

Table 4 indicates that among the 62 journal papers, 15 studies discuss the STEM model, 5 of which also discuss STEM pedagogy, and 1 discusses STEM teacher. This part discussed the progress of STEM curriculum integration under different models, which been designed and verified by scholars. In summary, STEM model mainly focuses on three types of STEM integration: curriculum integration, learning mode and teaching mode. Like Waterman *et al.* [61] designed the strategy of integrating computational thinking into core elementary STEM subject areas was intended to cultivate computational thinking practices in support of science learning. Within the context of a year-long professional learning program in Australia, Way *et al.* [55] developed an innovative tri-level approach to skill-building for teachers and their students.

Table 4. Articles related to STEM integration model

Author	Main objectives	Brief description
Williams et al.	SM	To explore STEM models in INSPIRES curriculum and majors on the pedagogy of biology
[1]		and technology education.
Gencer et al. [58]		Explores integrated STEM model from the theoretical level and emphasizes the integration strategy of STEM education.
Eğitimi et al. [59]		STEM model promotes the transition from departmental teaching to an integrated model that promotes innovation.
Gale et al. [60]		Key components and specific implementation cases of STEM model.
Waterman et al.		Computational thinking is integrated into STEM courses, and students' ability of data
[61]		analysis activities is explored through three kinds of STEM integration models.
Araya <i>et al</i> . [62]		STEM models of computational thinking, modeling capabilities, and machine learning activities are integrated into STEM education.
Quigley <i>et al</i> . [63]		STEM models of problem-based instruction, disciplinary integration, and problem-solving skills.
Ortiz-Revilla <i>et al.</i> [64]		STEM model analyzes the goals of comprehensive STEM education and discusses its impact on civic education.
Tijaro-Rojas <i>et al.</i> [65]		A STEM model's systematic and integrative sequence approach (SISA) applied in physics.
Lu <i>et al</i> . [66]	SM and SP	An integrated STEM curriculum model, through PjBL strategies, cultivates creativity.
McHugh et al.	(PjBL)	The impact of the STEM MISP model on students' science knowledge, problem-solving
[56]		skills, and math attitudes.
Li <i>et al</i> . [54]		A STEAM model that addresses the problem of insufficient STEM teachers and STEM integration through collaboration and PjBL.
Moore <i>et al</i> . [51]		Put engineering as the basis of STEM, the views and suggestions of STEM integration in early education were summarized through GBL.
Baker and	SM and SP	MEAs serve as a STEM model to help mathematics teachers build a vision of STEM
Galanti [57]	(EDL)	integration.
Way et al. [55]	SM and ST	A three-level STEM Model helps teachers and students build STEM skills, design processes, and integrated STEM programs.

In addition, researchers focused on and designed STEM integration-oriented projects based on STEM curriculum and pedagogies, there are the innovation implementation framework activities for visual innovation, PD program using the INSPIRES educative curriculum, conceptual model of STEAM, innovative STEAM education model supported by cooperative teaching [67], SISA [65], MiSP [68]. In this review, the STEM model considered to be an intermediate process between STEM pedagogy and STEM curriculum, and STEM

30 □ ISSN: 2089-9823

Model built through student-centered pedagogy is supported [46]. Student-centered model design is also the development trend of STEM integration [69].

3.2. Discussion

The discussion on STEM integration has attracted wide attention, there are 62 literatures, among which 15 discuss STEM curriculum, 14 discuss STEM projects, and 22 discuss STEM pedagogy. Besides, there are 4 studies on STEM teachers, 14 papers on STEM models and 4 papers on STEM evaluation. Some of them contain multiple discussions, so the overlaps are counted in the final results. From the results, it can be seen that STEM integration is emphasized in K-12 education. The 62 literatures screened support that STEM integration cultivate students' real-world problem-solving ability and 21st century skills. The construction of the STEM integrated curriculum, the pedagogy they followed, the model design of project learning, IBL, EDL, PBL are all commonly used learning methods and others learning methods like GBL and CBL in the educational field at present, they all value student-centered learning [51]. A large number of courses, project cases and appropriate learning methods are widely carried out in K-12 schools and have been widely recognized [70].

The surge in publications related to STEM education, particularly evident in the last three years, underscores the growing recognition of STEM's importance in modern education. This proliferation of research reflects a global acknowledgment of the need to advance STEM education to meet the demands of an increasingly complex world. Through a meticulous evaluation employing a comprehensive rubric, this study has identified six distinct categories encapsulating the breadth of research in STEM education. The first category focuses on STEM curriculum integration, exploring the amalgamation of diverse disciplines to enhance interdisciplinary learning, studies within this category delve into strategies for integrating subjects such as science, engineering, and mathematics, shedding light on how each contributes to the overall STEM learning experience. Pedagogical techniques in STEM education constitute the second and third categories, with a focus on methodologies such as PBL, EDL, and GBL, by employing these methods, educators aim to enhance students' research skills and deepen their engagement with STEM pojects. The fourth category centers on STEM models, emphasizing student-centered learning activities like PBL and innovative teaching methods, these studies highlight the efficacy of student-centric approaches in cultivating critical thinking and problem-solving skills. The fifth category underscores the pivotal role of teachers in advancing STEM curriculum integration, The last category underscores the pivotal role of teachers in advancing STEM curriculum integration, studies within this category explore the contributions of educators to instructional processes and highlight the importance of PD in fostering effective STEM teaching practices. The last category investigates assessment systems in interdisciplinary STEM integration projects; by evaluating various evaluation approaches, researchers aim to gauge the effectiveness of these projects in fostering holistic learning outcomes.

Further analysis of the reviewed studies reveals a diverse array of pedagogical approaches and their impacts on student learning and engagement. From EDL to PBL and IBAE, these methodologies offer promising avenues for enhancing STEM curriculum integration and improving student outcomes. Additionally, the exploration of STEM models showcases a rich tapestry of strategies aimed at improving educational outcomes. From theoretical integration strategies to the incorporation of computational thinking and machine learning, these models offer valuable insights into enhancing data analysis, problem-solving, and critical thinking skills among students. In conclusion, the breadth and depth of research in STEM education underscore its significance in modern educational discourse. By embracing interdisciplinary approaches, innovative pedagogies, and leveraging the expertise of educators, stakeholders can continue to advance STEM education and equip students with the skills needed to thrive in an ever-evolving world.

3.2.1. STEM integration and STEM curriculum

When we discussing STEM integration, it is necessary to clarify the concept and development of curriculum integration, because in essence, STEM integration is a form of curriculum integration [71]. The other terms for curriculum integration are transdisciplinary curriculum and convergence curriculum. The idea of curriculum integration comes from the realization that practical problems in the real world are not solved by separate subjects in school education, and that in many cases, the skills people need are developed through an integrated curriculum [72]. For example, mathematical knowledge, chemistry knowledge, geography knowledge, and even art and music knowledge may be applied to solving physics problems. The discussion on curriculum integration has always been a very hot topic in the educational circle, but up to now, the academic circle's description of curriculum integration is still not conclusive [73].

The two terms often used in the literature to describe curriculum integration are 'multidisciplinary' and 'interdisciplinary', and most scholars distinguish between multidisciplinary and interdisciplinary integration by the pathways and degrees of integration. Integration pathways are broadly divided into two types, correlation fields curriculum and broad fields curriculum, depending on how they are organized [2]. The way courses are organized in correlation curriculum fields is currently popular because it preserves the identity of

each subject and allows each subject to be run as an independent course [74]. However, the implementation of correlation fields poses a major challenge in that it requires a high level of curriculum and teacher-student collaboration. The correlation fields attach great importance on the level of curriculum integration, and the curriculum needs to be dynamic, and teachers need to ensure that there is a close relationship between the integrated curriculum and each independent course in the process of curriculum design and implementation [71]. In addition, major changes are needed to accommodate the harmonization of the integrated curriculum and other subjects, or they are abandoned due to incoherence. Such as in the integration of engineering courses, the knowledge of physics needs to be applied, and the knowledge of physics is closely connected with the knowledge of mathematics. In the process of solving this engineering problem, the knowledge of mathematics that needs to be applied does not match the knowledge of physics. In other words, students do not have the same level of mastery of mathematical knowledge and physical knowledge, which makes the integration course of solving engineering problems very difficult to carry out.

The counterpart of correlation curriculum fields is the integration of broad fields curriculum. The broad fields curriculum model [75], on the other hand, removes the boundaries between disciplines and integrates all disciplinary content into new areas of learning. The broad field curriculum model of STEM education no longer emphasizes the existence of physics, chemistry, and even science as separate disciplines, and instead integrates STEM content into a structured curriculum structure. The integration of broad areas of curriculum is generally achieved through activities or projects in the form of thematic activities or projects further achieve a coherent and organized structured curriculum structure [2]. For example, the teacher is given an intelligent track-seeking car project, and integrates the relevant knowledge of science, technology, engineering, mathematics, physics, computer and other courses into the project, and learns by completing the project. Therefore, the restriction between disciplines is broken, and students can experience learning in real situations through activities or projects, so that they can learn knowledge of various subjects unconsciously. But at the same time, it needs to be noted that the grasp of the balance between subjects puts forward higher requirements for teachers.

Some evidences indicate STEM integration was not provided a strict definition to avoid limiting creativity in an area that still requires research and practice [73]. Integrated STEM Education Framework talk about 'STEM integration' refers to the teaching of science or mathematics subject matter and practices through engineering practices and engineering design that integrate related technologies. The disciplines of STEM education are closely linked in an integration approach that prepares students to attempt to learn knowledge and skills that can be flexibly transferred to solve real-world problems [7], [76].

Traditionally, the most common and widespread curriculum model remains that of separate subjects [2], each subject is taught separately, but with little attention paid to how subjects relate to each other. For example, students are exposed to math and English from kindergarten level to science, physics, chemistry, and biology in middle and high school, and most of the curriculum is assessed through exams or curriculum tests that measure achievement. STEM, on the contrary, is more of an "integrated curriculum design" that integrates STEM and even more disciplines in a way that shows more clearly the functional relationships and deeper connections between the curricula. We tend to define STEM integration as a group of related but different disciplines that are formed into a single learning area. Topics from different fields are combined into new teaching tasks, so that each topic is no longer prominent in the new teaching tasks, and more comprehensive and broader project case courses are taken instead, like robot projects, intelligent aircraft projects, or intelligent track-seeking car projects, such courses are a combination of physics, mathematics, computer, art, music and a series of related subjects.

Interdisciplinary is an important core feature of STEM education. The disciplines in STEM education must be closely linked to foster students' mastery of knowledge and skills in an integration way and be able to make flexible transfer applications to solve real-world problems. In general, the division of knowledge by subject is helpful for scientific research, delving into the mysteries of natural phenomena and dividing knowledge into modules that are easy to teach, but does not reflect the authenticity and interest of our living world [77]. As a result, teaching in separate subjects has become a major disadvantage in today's highly developed world [75]. In response to this problem, there has been a trend to eliminate sub-disciplines and to integrate education, Maryland University engineering professor Leigh R. Abts uses "meta-discipline" to describe STEM, meaning that it is an integration knowledge domain representing science, technology, engineering, mathematics and other disciplines that exist in the real world and are indispensable and interconnected with each other [77], [78]. STEM interdisciplinary means that educators did not focus on a specific discipline or focus too much on disciplinary boundaries [1], but changed to specific problems, emphasizing the use of related knowledge from STEM disciplines to solve problems and achieve the educational goal of improving students' ability to solve real-world problems across disciplinary boundaries and from the perspective of integration application of multidisciplinary knowledge.

32 ISSN: 2089-9823

3.2.2. STEM pedagogy and STEM model

A mature comprehensive STEM curriculum needs to be supported by the coordination of teacher resources and other supports in different disciplines, this is a precondition which also becomes a relatively large challenges, just like the problems we mentioned before, in some common STEM models, often require several disciplines or even interdisciplinary and inter-school teams to carry out, especially some largescale projects [79]. The STEM model for K-12 have become broader, schools and society are trying to integrate more information technology into the K-12 in order to provide students with more opportunities, STEM programs, such as robotics projects, astronomy projects, art and humanities projects, and bioinformatics projects, involve not only K-12 but also whole education stage [80]. STEM curriculum in either direction may require different models like learning methods, different learning designs, and different teacher roles at different times. While research strongly argues for interdisciplinary, student-centered design, it is more important that any framework be flexible enough to accommodate other approaches [81].

On this basis, scholars have explored a series of methods suitable for practice. STEM education especially based on students centered pedagogies has the potential for increasing students' cognitive engagement while, at the same time, introducing interesting STEM careers. At present, PjBL, PBL, and EDL are the most commonly used learning methods, which have been proved to be helpful for students to improve their STEM level, develop skills and choose career paths in the 21st century [39], [48], [82]. Researchers also continue to gain experience in these designed programs that can make STEM education more interdisciplinary. In fact, the construction of these STEM curriculum and programs requires the support of many resources, including support from external social, from within the school, and from STEM discipline leaders [83], at the same time more important is the implementation of the subject teachers and students' support. These projects require constant iterations due to traditional beliefs about curriculum and assessment, time and space constraints, and challenges to changing curriculum structures. Therefore, it will be very difficult to carry out reform smoothly.

Historically, integrated curriculum advocacy has never prevailed against disciplinary interests [79], [84]. One may also ask, based on previous experience, whether the reform of interdisciplinary STEM integration will make a difference with regard to current needs. Perhaps, with the call for a reorientation of education, major changes in the way knowledge are acquired, teachers and students engaging in STEM, STEM integration will become an established phenomenon. Perhaps more importantly, STEM integration could be a constant source of motivation for educational discipline reform.

4. CONCLUSION

Overall, plenty of research proposed that STEM education should pay attention to interdisciplinary integration, not only the integration of the original four disciplines, but also the integration of STEM and other disciplines, at least the integration of one STEM discipline and one non-STEM discipline. However, no matter how the external integration of subject changes, the core of STEM education is to achieve flexible cross-integration among disciplines through interdisciplinary education, promote the development of various disciplines, and achieve personal ability improvement or physical innovation, this point has always been indisputable. STEM education emphasizes interdisciplinary crossing and integration and achieves the development of students' diverse abilities through the learning of knowledge structure and application mode among different disciplines. We can rely on the subject transfer idea of STEM education to realize the knowledge application between subjects through practice. Due to the need for scientific progress and development, various disciplines have gradually separated and formed their own relatively independent system. However, when facing real problems, students need to integrate multiple disciplines to apply real situation problems and form a more complete and coherent understanding of the world in the process of constant subject conversion.

This article summarizes some integration frameworks and the development paths and methods of STEM integration. In particular, this study reveals the development of STEM curriculum, STEM pedagogy and model in STEM integration, and pays attention to the concept of interdisciplinary integration, advocates curriculum integration, and improves students' abilities by integrating curriculum or learning methods. Additionally, it is important to note that research on the internal impact of learning outcomes, STEM literacy, and students' STEM identity remains insufficient, as well as limited research on how to explicitly integrate existing STEM subject curriculum standards to address real-world problems and improve 21st century skills. Considering the current real challenges, subsequent research needs to further explore the intrinsic connection between curriculum implementation methods and STEM outcomes to provide more data support for the development of STEM integration to better improve learning effects and cultivate talents for social development.

FUNDING INFORMATION

Thanks to the supports from Faculty of Education, Universiti Kebangsaan Malaysia, grant number PDE52, makes this article possible.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	E	Vi	Su	P	Fu
Zhang Lei	✓	✓	✓		\checkmark			✓	✓	✓	✓			
Nur Atiqah Jalaludin	\checkmark	\checkmark		\checkmark		\checkmark	✓	\checkmark	✓	\checkmark		\checkmark	\checkmark	\checkmark
Mohamad Sattar Rasul	\checkmark	\checkmark		\checkmark		\checkmark	✓	\checkmark	\checkmark	\checkmark		\checkmark	✓	\checkmark
Mohamad Hidir Mhd	✓			\checkmark		✓		\checkmark		\checkmark		\checkmark	✓	\checkmark
Salim														

CONFLICT OF INTEREST STATEMENT

The authors declare there is no competing interests.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author, [ZL], upon reasonable request.

REFERENCES

- [1] T. Williams, J. Singer, J. Krikorian, C. Rakes, and J. Ross, "Measuring pedagogy and the integration of engineering design in STEM classrooms," *Journal of Science Education and Technology*, vol. 28, no. 3, pp. 179–194, Jun. 2019, doi: 10.1007/s10956-018-9756-y.
- [2] D. R. Herschbach, "The STEM initiative: constraints and challenges," *Journal of STEM Teacher Education*, vol. 48, no. 1, pp. 1–16, 2011.
- [3] R. W. Bybee, "Advancing STEM education: a 2020 vision," *Technology & Engineering Teacher*, vol. 70, no. 1, pp. 30–35, 2010.
- [4] Y. S. Hsu and Y. F. Yeh, *Asia-pacific STEM teaching practices*. Singapore: Springer Singapore, 2019, doi: 10.1007/978-981-15-0768-7.
- [5] J. B. Labov, A. H. Reid, and K. R. Yamamoto, "Integrated biology and undergraduate science education: a new biology education for the twenty-first century?," CBE—Life Sciences Education, vol. 9, no. 1, pp. 10–16, Mar. 2010, doi: 10.1187/cbe.09-12-0092.
- [6] M. E. Sanders, "STEM, stem education, stemmania," The Technology Teacher, no. 4, pp. 20–26, Jan. 2009, Accessed: Aug. 14, 2025.
 [Online]. Available: http://hdl.handle.net/10919/51616
- [7] I. C. Livstrom, A. H. Szostkowski, and G. H. Roehrig, "Integrated STEM in practice: learning from montessori philosophies and practices," *School Science and Mathematics*, vol. 119, no. 4, pp. 190–202, Apr. 2019, doi: 10.1111/ssm.12331.
- [8] M. F. M. Salleh, N. A. Md Nasir, and M. H. Ismail, "STEM facilitators training programme: trainee teachers' perceptions of the impact on their personal growth as future teachers," *Asian Journal of University Education*, vol. 16, no. 3, pp. 281–291, Oct. 2020, doi: 10.24191/ajue.v16i3.11091.
- [9] F.-K. Chiang, C.-H. Chang, S. Wang, R.-H. Cai, and L. Li, "The effect of an interdisciplinary STEM course on children's attitudes of learning and engineering design skills," *International Journal of Technology and Design Education*, vol. 32, no. 1, pp. 55–74, Mar. 2022, doi: 10.1007/s10798-020-09603-z.
- [10] M.-C. Shanahan, L. E. Carol-Ann Burke, and K. Francis, "Using a boundary object perspective to reconsider the meaning of STEM in a Canadian context," *Canadian Journal of Science, Mathematics and Technology Education*, vol. 16, no. 2, pp. 129–139, Apr. 2016, doi: 10.1080/14926156.2016.1166296.
- [11] UNESCO, "Proposal for the establishment of a new category 1 institute in Shanghai, China," UNESCO, Oct. 2023, pp. 1–21. Accessed: Aug. 14, 2025. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000387251
- [12] Y. Dai *et al.*, "Collaborative construction of artificial intelligence curriculum in primary schools," *Journal of Engineering Education*, vol. 112, no. 1, pp. 23–42, Jan. 2023, doi: 10.1002/jee.20503.
- [13] V. Wong, J. Dillon, and H. King, "STEM in England: meanings and motivations in the policy arena," *International Journal of Science Education*, vol. 38, no. 15, pp. 2346–2366, Oct. 2016, doi: 10.1080/09500693.2016.1242818.
 [14] B. Lohmar and T. Eckhardt, "The education system in the Federal Republic of Germany 2012/2013 a description of the responsibilities,
- [14] B. Lohmar and T. Eckhardt, "The education system in the Federal Republic of Germany 2012/2013 a description of the responsibilities, structures and developments in education policy for the exchange of information in Europe," 2014. Accessed: Mar. 26, 2024. [Online]. Available: https://vital.voced.edu.au/vital/access/services/Download/ngv:71727/SOURCE201
- [15] M. Ishikawa and S. Fujii, "Consultant report securing Australia's future stem: country comparisons stem country comparisons: Japan," 2014. Accessed: Mar. 26, 2024. [Online]. Available: https://acola.org/wp-content/uploads/2018/12/Consultant-Report-Japan.pdf

[16] Y. F. Liew and H. K. Teoh, "STEM education in Malaysia: an organisational development approach?," *International Journal of Advanced Research in Future Ready Learning and Education*, vol. 29, no. 1, pp. 1–19, Jan. 2023, doi: 10.37934/frle.29.1.119.

- [17] E. H. M. Shahali, L. Halim, M. S. Rasul, K. Osman, and M. A. Zulkifeli, "STEM learning through engineering design: impact on middle secondary students' interest towards STEM," *Eurasia Journal of Mathematics, Science and Technology Education*, vol. 13, no. 5, pp. 1189–1211, Dec. 2017, doi: 10.12973/eurasia.2017.00667a.
- [18] S. Hwang, "Effects of engineering students' soft skills and empathy on their attitudes toward curricula integration," Education Sciences, vol. 12, no. 7, p. 452, Jun. 2022, doi: 10.3390/educsci12070452.
- [19] W. Zheng, Chinese STEAM education development report. Beijing: Science Press, 2017.
- [20] W. Mengist, T. Soromessa, and G. Legese, "Method for conducting systematic literature review and meta-analysis for environmental science research," *MethodsX*, vol. 7, p. 100777, 2020, doi: 10.1016/j.mex.2019.100777.
- [21] L. D. English, "STEM education K-12: perspectives on integration," International Journal of STEM Education, vol. 3, no. 3, pp. 1–8, Dec. 2016, doi: 10.1186/s40594-016-0036-1.
- [22] A. Juškevičienė, V. Dagienė, and V. Dolgopolovas, "Integrated activities in STEM environment: methodology and implementation practice," Computer Applications in Engineering Education, vol. 29, no. 1, pp. 209–228, Jan. 2021, doi: 10.1002/cae.22324.
- [23] R. Tytler et al., "An interdisciplinary approach to primary school mathematics and science learning," International Journal of Science Education, vol. 43, no. 12, pp. 1926–1949, Aug. 2021, doi: 10.1080/09500693.2021.1946727.
- [24] E. Ring-Whalen, E. Dare, G. Roehrig, P. Titu, and E. Crotty, "From conception to curricula: the role of science, technology, engineering, and mathematics in integrated STEM units," *International Journal of Education in Mathematics, Science and Technology*, vol. 6, no. 4, pp. 343–362, Jul. 2018, doi: 10.18404/ijemst.440338.
- [25] T. Aldemir et al., "Investigating students' learning experiences in a neural engineering integrated STEM high school curriculum," Education Sciences, vol. 12, no. 10, p. 705, Oct. 2022, doi: 10.3390/educsci12100705.
- [26] M. L. Aranda, S. S. Guzey, and T. J. Moore, "Multidisciplinary discourses in an engineering design-based science curricular unit," International Journal of Technology and Design Education, vol. 30, no. 3, pp. 507–529, Jul. 2020, doi: 10.1007/s10798-019-09517-5.
- International Journal of Technology and Design Education, vol. 30, no. 3, pp. 507–529, Jul. 2020, doi: 10.1007/s10798-019-09517-5.
 J. L. Fornsaglio, Z. Sheffler, D. C. Hull, and A. Bobak, "The impact of semester-long authentic research on student experiences," Journal of Biological Education, vol. 55, no. 1, pp. 2–16, Jan. 2021, doi: 10.1080/00219266.2019.1643759.
- [28] T. B. Bedada and F. Machaba, "The effect of geogebra on STEM students learning trigonometric functions," Cogent Education, vol. 9, no. 1, Dec. 2022, doi: 10.1080/2331186X.2022.2034240.
- [29] S. S. Guzey and W. Li, "Engagement and science achievement in the context of integrated STEM education: a longitudinal study," Journal of Science Education and Technology, Dec. 2022, doi: 10.1007/s10956-022-10023-y.
- [30] P. W. Garner, N. Gabitova, A. Gupta, and T. Wood, "Innovations in science education: infusing social emotional principles into early STEM learning," Cultural Studies of Science Education, vol. 13, no. 4, pp. 889–903, Dec. 2018, doi: 10.1007/s11422-017-9826-0.
- [31] B. M. Reynante, M. E. Selbach-Allen, and D. R. Pimentel, "Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies," *Science and Education*, vol. 29, no. 4, pp. 785–803, Aug. 2020, doi: 10.1007/s11191-020-00121-x.
- [32] H. Zhang, L. Estabrooks, and A. Perry, "Bringing invention education into middle school science classrooms: a case study," *Technology & Innovation*, vol. 20, no. 3, pp. 235–250, Feb. 2019, doi: 10.21300/20.3.2019.235.
- [33] A. J. Petrosino, K. A. Gustafson, and P. Shekhar, "STEM integration: a study examining the enactment of prescribed research based engineering curriculum," *International Journal of Engineering Education*, vol. 32, no. 1, pp. 1–11, 2016.
- [34] W. Park and H. Cho, "The interaction of history and STEM learning goals in teacher-developed curriculum materials: opportunities and challenges for STEAM education," Asia Pacific Education Review, vol. 23, no. 3, pp. 457–474, Sep. 2022, doi: 10.1007/s12564-022-09741-0.
- [35] M. Ryan, J. Gale, and M. Usselman, "Integrating engineering into core science instruction: translating NGSS principles into practice through iterative curriculum design," *International Journal of Engineering Education*, vol. 33, no. 1, 2017.
- [36] A. Leung, "Boundary crossing pedagogy in STEM education," International Journal of STEM Education, vol. 7, no. 1, pp. 1–11, 2020, doi: 10.1186/s40594-020-00212-9.
- [37] E. A. Siverling, E. Suazo-Flores, C. A. Mathis, and T. J. Moore, "Students' use of STEM content in design justifications during engineering design-based STEM integration," *School Science and Mathematics*, vol. 119, no. 8, pp. 457–474, Dec. 2019, doi: 10.1111/ssm.12373.
- [38] S. S. Guzey, T. J. Moore, M. Harwell, and M. Moreno, "STEM integration in middle school life science: student learning and attitudes," Journal of Science Education and Technology, vol. 25, no. 4, pp. 550–560, Aug. 2016, doi: 10.1007/s10956-016-9612-x.
- [39] S. S. Guzey, M. Harwell, M. Moreno, Y. Peralta, and T. J. Moore, "The impact of design-based STEM integration curricula on student achievement in engineering, science, and mathematics," *Journal of Science Education and Technology*, vol. 26, no. 2, pp. 207–222, Apr. 2017, doi: 10.1007/s10956-016-9673-x.
- [40] A. C. Johnston, M. Akarsu, T. J. Moore, and S. S. Guzey, "Engineering as the integrator: a case study of one middle school science teacher's talk," *Journal of Engineering Education*, vol. 108, no. 3, pp. 418–440, Jul. 2019, doi: 10.1002/jee.20286.
- [41] C. A. Mathis, E. A. Siverling, T. J. Moore, K. A. Douglas, and S. S. Guzey, "Supporting engineering design ideas with science and mathematics: a case study of middle school life science students," *International Journal of Education in Mathematics, Science and Technology*, vol. 6, no. 4, pp. 424–442, Jul. 2018, doi: 10.18404/ijemst.440343.
- [42] R. Lie, M. L. Aranda, S. S. Guzey, and T. J. Moore, "Students' views of design in an engineering design-based science curricular unit," Research in Science Education, vol. 51, no. 3, pp. 663–683, Jun. 2021, doi: 10.1007/s11165-018-9813-9.
- [43] E. A. Siverling, T. J. Moore, E. Suazo-Flores, C. A. Mathis, and S. S. Guzey, "What initiates evidence-based reasoning?: situations that prompt students to support their design ideas and decisions," *Journal of Engineering Education*, vol. 110, no. 2, pp. 294–317, Apr. 2021, doi: 10.1002/jee.20384.
- [44] J. R. Wieselmann, M. T. Sager, and B. C. Price, "STEM project-based instruction: an analysis of teacher-developed integrated STEM PBI curriculum units," *Education Sciences*, vol. 12, no. 9, p. 626, Sep. 2022, doi: 10.3390/educsci12090626.
- [45] S. J. Lynch et al., "A policy-relevant instrumental case study of an inclusive STEM-focused high school: manor new tech high," International Journal of Education in Mathematics, Science and Technology, vol. 5, no. 1, p. 1, Jun. 2016, doi: 10.18404/ijemst.75656.
- [46] Y. Lee, R. M. Capraro, and A. Bicer, "Affective mathematics engagement: a comparison of STEM PBL versus non-STEM PBL instruction," Canadian Journal of Science, Mathematics and Technology Education, vol. 19, no. 3, pp. 270–289, Sep. 2019, doi: 10.1007/s42330-019-00050-0.
- [47] B. R. Belland, A. E. Walker, N. J. Kim, and M. Lefler, "Synthesizing results from empirical research on computer-based scaffolding in STEM education," *Review of Educational Research*, vol. 87, no. 2, pp. 309–344, Apr. 2017, doi: 10.3102/0034654316670999.
- [48] S. L. Navy and F. Kaya, "PBL as a pedagogical approach for integrated STEM: evidence from prospective teachers," School Science and Mathematics, vol. 120, no. 5, pp. 285–296, May 2020, doi: 10.1111/ssm.12408.

- [49] E. Karahan, S. C. Bilici, and A. Ünal, "Integration of media design processes in science, technology, engineering, and mathematics (STEM) education," Eurasian Journal of Educational Research, vol. 15, no. 60, pp. 221–240, Sep. 2015, doi: 10.14689/ejer.2015.60.15.
- [50] J. A. Gonzales, K. B. Ritter, and R. N. Shelton, "Considerations for challenges with STEM standards alignment in the middle grades," School Science and Mathematics, vol. 122, no. 7, pp. 381–385, Nov. 2022, doi: 10.1111/ssm.12550.
- [51] T. J. Moore, K. M. Tank, and L. English, "Engineering in the early grades: harnessing children's natural ways of thinking," in Early Engineering Learning, L. English and T. Moore, Eds., Springer Singapore, 2018, pp. 9–18, doi: 10.1007/978-981-10-8621-2_2.
- [52] S. K. Chung and D. Li, "Issues-based STEAM education: a case study in a Hong Kong secondary school," *International Journal of Education and the Arts*, 2021, doi: 10.26209/ijea22n3.
- [53] M. Cruz-Sandoval, J. C. Vázquez-Parra, M. Carlos-Arroyo, and A. M. Vidal, "Competency-based learning: an approach integrating the domains of complex thinking competency in a group of mexican students," *European Journal of Contemporary Education*, vol. 12, no. 2, Jun. 2023, doi: 10.13187/ejced.2023.2.399.
- [54] J. Li, H. Luo, L. Zhao, M. Zhu, L. Ma, and X. Liao, "Promoting STEAM education in primary school through cooperative teaching: a design-based research study," Sustainability (Switzerland), vol. 14, no. 16, p. 10333, Aug. 2022, doi: 10.3390/su141610333.
- [55] J. Way, C. Preston, and K. Cartwright, "STEM 1, 2, 3: levelling up in primary schools," Education Sciences, vol. 12, no. 11, p. 827, Nov. 2022, doi: 10.3390/educsci12110827.
- [56] L. McHugh, A. M. Kelly, J. H. Fisher, and M. David Burghardt, "Graphing as a means to improve middle school science learning and mathematics-related affective domains," *Research in Science Education*, vol. 51, no. 2, 2021, doi: 10.1007/s11165-018-9796-6.
- [57] C. K. Baker and T. M. Galanti, "Integrating STEM in elementary classrooms using model-eliciting activities: responsive professional development for mathematics coaches and teachers," *International Journal of STEM Education*, vol. 4, no. 1, p. 10, Dec. 2017, doi: 10.1186/s40594-017-0066-3.
- [58] A. S. Gencer, H. Doğan, K. Bilen, and B. Can, "Integrated STEM education models," (in Turkish) Pamukkale University Journal of Education, vol. 45, no. 45, pp. 38–55, Jan. 2019.
- [59] F. Eğitimi, A. Öğretmeni, E. Yansımaları, M. S. Corlu, R. M. Capraro, and M. M. Capraro, "Introducing STEM education: implications for educating our teachers for the age of innovation," *Education and Science*, vol. 39, p. 171, 2014.
- [60] J. Gale, M. Alemdar, J. Lingle, and S. Newton, "Exploring critical components of an integrated STEM curriculum: an application of the innovation implementation framework," *International Journal of STEM Education*, vol. 7, no. 1, p. 5, Dec. 2020, doi: 10.1186/s40594-020-0204-1.
- [61] K. P. Waterman, L. Goldsmith, and M. Pasquale, "Integrating computational thinking into elementary science curriculum: an examination of activities that support students' computational thinking in the service of disciplinary learning," *Journal of Science Education and Technology*, vol. 29, no. 1, pp. 53–64, Feb. 2020, doi: 10.1007/s10956-019-09801-y.
- [62] R. Araya, M. Isoda, and J. van der M. Moris, "Developing computational thinking teaching strategies to model pandemics and containment measures," *International Journal of Environmental Research and Public Health*, vol. 18, no. 23, p. 12520, Nov. 2021, doi: 10.3390/ijerph182312520.
- [63] C. F. Quigley, D. Herro, and F. M. Jamil, "Developing a conceptual model of STEAM teaching practices," School Science and Mathematics, vol. 117, no. 1–2, pp. 1–12, Feb. 2017, doi: 10.1111/ssm.12201.
- [64] J. Ortiz-Revilla, A. Adúriz-Bravo, and I. M. Greca, "A framework for epistemological discussion on integrated STEM education," Science & Education, vol. 29, no. 4, pp. 857–880, Aug. 2020, doi: 10.1007/s11191-020-00131-9.
- [65] R. Tíjaro-Rojas, A. Arce-Trigatti, J. Cupp, J. Pascal, and P. E. Arce, "A systematic and integrative sequence approach (SISA) for mastery learning: anchoring bloom's revised taxonomy to student learning," *Education for Chemical Engineers*, vol. 17, pp. 31–43, Oct. 2016, doi: 10.1016/j.ece.2016.06.001.
- [66] S.-Y. Lu, C.-C. Lo, and J.-Y. Syu, "Project-based learning oriented STEAM: the case of micro-bit paper-cutting lamp," International Journal of Technology and Design Education, vol. 32, no. 5, pp. 2553–2575, Nov. 2022, doi: 10.1007/s10798-021-09714-1.
- [67] A. Leavy, L. Dick, M. Meletiou-Mavrotheris, E. Paparistodemou, and E. Stylianou, "The prevalence and use of emerging technologies in STEAM education: a systematic review of the literature," *Journal of Computer Assisted Learning*, vol. 39, no. 4, pp. 1061–1082, Aug. 2023, doi: 10.1111/jcal.12806.
- [68] L. McHugh, A. M. Kelly, and M. D. Burghardt, "Professional development for a middle school mathematics-infused science curriculum," *Journal of Science Teacher Education*, vol. 29, no. 8, pp. 804–828, Nov. 2018, doi: 10.1080/1046560X.2018.1514825.
- [69] A. Singer, G. Montgomery, and S. Schmoll, "How to foster the formation of STEM identity: studying diversity in an authentic learning environment," *International Journal of STEM Education*, vol. 7, no. 1, p. 57, Dec. 2020, doi: 10.1186/s40594-020-00254-z.
- [70] A. Simpson and Y. Bouhafa, "Youths' and adults' identity in STEM: a systematic literature review," *Journal for STEM Education Research*, vol. 3, no. 2, pp. 167–194, Jul. 2020, doi: 10.1007/s41979-020-00034-y.
- [71] T. Wang, Y. Ma, Y. Ling, and J. Wang, "Integrated STEM in high school science courses: an analysis of 23 science textbooks in China," Research in Science and Technological Education, vol. 41, no. 3, pp. 1197–1214, Jul. 2023, doi: 10.1080/02635143.2021.1995346.
- [72] C. M. Czerniak, W. B. Weber, A. Sandmann, and J. Ahern, "A literature review of science and mathematics integration," School Science and Mathematics, vol. 99, no. 8, pp. 421–430, Dec. 1999, doi: 10.1111/j.1949-8594.1999.tb17504.x.
- [73] M. A. Honey, G. Pearson, and H. Schweingruber, STEM integration in K-12 education: status, prospects, and an agenda for research. Washington, D.C.: National Academies Press, 2014, doi: 10.17226/18612.
- [74] G. H. Roehrig, E. A. Dare, E. Ring-Whalen, and J. R. Wieselmann, "Understanding coherence and integration in integrated STEM curriculum," *International Journal of STEM Education*, vol. 8, no. 1, p. 2, Jan. 2021, doi: 10.1186/s40594-020-00259-8.
- [75] R. W. Bybee, The case for STEM education: challenges and opportunities. Arlington, Virginia: National Science Teachers Association, 2013, doi: 10.2505/9781936959259.
- [76] A. Asghar, R. Ellington, E. Rice, F. Johnson, and G. M. Prime, "Supporting STEM education in secondary science contexts," Interdisciplinary Journal of Problem-Based Learning, vol. 6, no. 2, Aug. 2012, doi: 10.7771/1541-5015.1349.
- [77] J. Morrison, A. R. McDuffie, and B. French, "Identifying key components of teaching and learning in a STEM school," School Science and Mathematics, vol. 115, no. 5, pp. 244–255, May 2015, doi: 10.1111/ssm.12126.
- [78] T. J. Kennedy and M. R. L. Odell, "STEM education as a meta-discipline," in Contemporary Trends and Issues in Science Education, vol. 56, B. Akpan, B. Cavas, and T. Kennedy, Eds., Springer Cham, 2023, pp. 37–51, doi: 10.1007/978-3-031-24259-5_4.
- [79] R. Tytler, G. Williams, L. Hobbs, and J. Anderson, "Challenges and opportunities for a STEM interdisciplinary agenda," in *Interdisciplinary Mathematics Education: The State of the Art and Beyond*, B. Doig, J. Williams, D. Swanson, R. B. Ferri, and P. Drake, Eds., Springer Cham, 2019, pp. 51–81, doi: 10.1007/978-3-030-11066-6_5.
- [80] S.-K. Chen, Y.-T. C. Yang, C. Lin, and S. S. J. Lin, "Dispositions of 21st-century skills in STEM programs and their changes over time," *International Journal of Science and Mathematics Education*, vol. 21, no. 4, pp. 1363–1380, Apr. 2023, doi: 10.1007/s10763-022-10288-0.
- [81] I. M. Zain, B. Muniandy, and W. Hashim, "The integration of 21st-century learning framework in the asie instructional design model," Journal of Psychology Research, vol. 6, no. 7, Jul. 2016, doi: 10.17265/2159-5542/2016.07.004.

36 □ ISSN: 2089-9823

[82] K. Y. Lin, Y. T. Wu, Y. T. Hsu, and P. J. Williams, "Effects of infusing the engineering design process into STEM project-based learning to develop preservice technology teachers' engineering design thinking," *International Journal of STEM Education*, vol. 8, no. 1, 2021, doi: 10.1186/s40594-020-00258-9.

- [83] M. E. Beier, M. H. Kim, A. Saterbak, V. Leautaud, S. Bishnoi, and J. M. Gilberto, "The effect of authentic project-based learning on attitudes and career aspirations in STEM," *Journal of Research in Science Teaching*, vol. 56, no. 1, pp. 3–23, Jan. 2019, doi: 10.1002/tea.21465.
- [84] F. F. Padró, M. M. Hurley, K. Trimmer, and J. Donovan, "The unintended impact of regulatory compliance: the case of pre-service teacher preparation to teach integrated math-science education under no child left behind," in *Curriculum, Schooling and Applied Research: Challenges and Tensions for Researchers*, J. Donovan, K. Trimmer, and N. Flegg, Eds., Palgrave Macmillan Cham, 2020, pp. 41–75, doi: 10.1007/978-3-030-48822-2 3.

BIOGRAPHIES OF AUTHORS

Zhang Lei is a doctoral candidate in the Faculty of Education at the Universiti Kebangsaan Malaysia in Bangi, Malaysia. His research field inculding STEM education, TVET, technology education, and career development. He can be contacted at email: p125329@siswa.ukm.edu.my.

Nur Atiqah Jalaludin si sa senior lecturer in STEM Enculturation Research Centre, Faculty of Education, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia since January 2022. She was a research assistant for STEM Enculturation Research Centre, conducting research and programs on STEM education since 2016 and a social research officer since February 2021. Her academic journey began with a degree in applied biology from Universiti Sains Malaysia (USM) in 2010. She obtained a master in entomology in 2011 and PhD in biology from Universiti Kebangsaan Malaysia in 2019. Her research interest is in applied biology, insect ecology, data analysis, and STEM education. She is currently a program coordinator and trainer for Universiti Kebangsaan Malaysia STEM modul, Bitara STEM. She can be contacted at email: nuratiqah.jalaludin@ukm.edu.my.

Mohamad Sattar Rasul © Si is a professor in the Faculty of Education, Universiti Kebangsaan Malaysia since 2012. He is also the chairman of STEM Enculturation Center. His academic journey began with a diploma in mechanical engineering in 1987 and a bachelor of education with honours in technology and education (mechanical engineering) in 1996 from Universiti Teknologi Malaysia (UTM). He obtained a masters and PhD degree in industrial engineering and system from Universiti Putra Malaysia (UPM) in 2004 and 2010 respectively. His research interests include STEM education, career development, quality assurance, qualification and skills certification systems, and TVET policy and curriculum. He holds the position of professor in TVET and STEM education at the university level, chairman of the STEM cultivation study center for almost seven years, and fellow of the engineering education and research center. He can be contacted at email: drsattar@ukm.edu.my.

Mohamad Hidir Mhd Salim si sa research fellow at the institute of visual informatics at Universiti Kebangsaan Malaysia. He obtained his degree in computer science, master's in information systems, and PhD in visual informatics at the same institution. His research focuses on human-computer interaction, persuasive technology, UI/UX, and e-learning. He can be contacted at email: mhdhidir@ukm.edu.my.