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Developing an assessment tool to identify mathematical misconceptions is
important for early intervention and support for at-risk students. This
exploratory sequential mixed methods study aimed to develop and validate a
questionnaire for self-reflection on mathematical misconceptions among
senior high school students using exploratory and confirmatory factor
analyses as an application of structural equation modeling (SEM). This study
involved 80 senior high school mathematics students across regions in the
Philippines for the mathematical misconception test in the first phase. Of
these, 20 purposively selected students who committed the most errors in the
misconception test were interviewed to explore the underlying constructs of
the students’ mathematical misconceptions. For the third and final phase,
310 selected students completed the developed self-reflected mathematical
misconception scale. In this study, we identified four key factors of
mathematical misconceptions: lack of procedural and conceptual knowledge,
poor mathematical abstraction, internal barriers, and cognitive conflict. The
developed scale, comprising 41 validated items, was tested valid and reliable
tool for educators in assessing and addressing students’ mathematical
misconceptions, allowing for designed instructional strategies and targeted
interventions. Further research is recommended to explore the causes and
remediation of mathematical misconceptions and track students’ progress in
addressing them over time.
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1. INTRODUCTION
The field of secondary mathematics education is at a critical point where students often need help

with mathematical misconceptions that can significantly hinder their understanding of mathematical
concepts. These misconceptions have been a common problem, particularly among senior high school
students. Misunderstandings and errors in mathematics have gained attention from researchers, scholars, and
mathematics educators, leading to numerous studies aiming to comprehend the scope of these issues and
develop strategies to lessen their impact.

Ojose [1] highlights the prevalence of misunderstandings and errors in mathematics across student
populations. These issues are multifaceted, influenced by various factors such as student attitudes toward
mathematics, teaching methods, teaching abilities, students’ preconceptions, limited understanding,
inadequate modeling, and insufficient higher-order thinking skills [2]–[7]. Mathematical misconceptions
often arise from students’ prior knowledge, which they erroneously generalize [8]. These misconceptions can

https://creativecommons.org/licenses/by-sa/4.0/
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lead students to believe their incorrect methods are correct or to feel uncertain about their approaches,
eventually resulting in persistent errors [9], [10]. In addition, errors may be committed by students due to
carelessness when verifying answers [11].

Various studies have focused on identifying specific misconceptions within mathematical concepts
and have emphasized the importance of addressing them proactively. Problem-solving activities have
emerged as a practical approach to pinpoint and rectify these misconceptions [12]. Furthermore,
understanding the underlying reasons for these misconceptions is essential. Visual mathematics has been
proposed as a pedagogical approach to help students grasp mathematical concepts better, as students often
develop misconceptions when taught to memorize procedures rather than understand underlying principles
[13]. In addition to addressing misconceptions, the literature highlights the importance of self-reflective
thinking in mathematics education. Self-reflection can foster metacognitive processes, enabling students to
become more aware of their thinking processes, identify strengths and weaknesses, and develop strategies for
improvement [14]. Significantly, self-reflection can improve students’ attitudes toward mathematics, helping
them develop a more positive outlook and better performance [15].

This research undertook a distinctive approach to mathematical misconceptions among senior high
school science, technology, engineering, and mathematics (STEM) students in the Philippines. Unlike prior
studies that primarily aimed to identify misconceptions and administer interventions afterward, this study
sought to empower students through self-assessment and self-reflection. Developing a valid self-assessment
tool will encourage students to engage with their mathematical understanding, fostering a sense of ownership
in their learning process. The utilization of confirmatory factor analysis (CFA) added a layer of
methodological sophistication to the study, elevating its reliability and validity.

The primary goal of this research was to equip senior high school STEM students with the tools to
recognize and rectify their mathematical misconceptions, potentially enhancing their overall mathematical
competence. Additionally, this study holds promise for future researchers and educators, offering a valuable
resource for those interested in innovative approaches to address misconceptions and promote self-directed
learning in mathematics education. This study aims to develop and validate a self-reflected mathematical
misconceptions scale (SMMS) for senior high school students. Specifically, this study sought to answer the
following research questions: i) what are the underlying constructs of the SMMS? and ii) does the SMMS
possess adequate internal consistency?

2. LITERATURE REVIEW
2.1.  Mathematical misconceptions

Misconceptions in mathematics, particularly among senior high school students, pose significant
challenges to their comprehension and application of mathematical concepts [1]. Numerous studies have
explored the causes of these misconceptions, attributing them to factors such as student attitudes, teaching
methods, and limited understanding [3], [5]. Students’ inaccurate ideas often stem from a lack of clarity in
concept learning, leading to persistent errors and hindering academic performance [8]. Recognizing the
distinction between errors and misconceptions is crucial, as errors result from negligence, while
misconceptions arise from misunderstandings [16].

Research over the past decade has categorized general mathematics learning mistakes into
systematic, random, and thoughtless errors [17]. Misconceptions, as described by Tippett [18], represent
disagreements between students and experts, resulting in systematic errors in understanding [19]. In a broader
context, inadequate mastery of fundamental mathematical concepts increases the likelihood of employing
incorrect strategies, emphasizing the importance of a solid mathematical foundation for effective learning
[20]. Thus, educators play a significant role in addressing these misconceptions, requiring awareness of
common student misunderstandings and the development of effective strategies.

Several studies propose problem-solving activities as a promising approach to identify and correct
misconceptions, emphasizing the importance of real-world applications in mathematics education [21].
Visualizing mathematical concepts, as advocated by Boaler et al. [13] is considered essential in overcoming
misconceptions caused by rote memorization. The literature emphasizes the challenge of correcting deeply
rooted misconceptions and emphasizes the role of technology in providing visual and interactive
representations to deepen students’ understanding [22]. Addressing misconceptions early in the learning
process is important for promoting students’ mathematical understanding and performance.

2.2.  Self-reflection in mathematics
Self-reflective thinking in mathematics education has garnered considerable attention, with a focus on

enhancing students’ learning experiences and improving their performance [23]. Self-reflective thinking
promotes metacognitive processes, necessary for effective problem-solving in mathematics [24]. Through self-
reflection, students gain awareness of their thinking processes, identify strengths and weaknesses, and develop
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strategies for improvement. An essential aspect of self-reflective thinking is its potential to positively impact
students’ attitudes towards mathematics [25]. Many students face challenges and harbor negative attitudes
towards the subject, but self-reflection can contribute to a more positive outlook. Integrating self-reflective
thinking into mathematics instruction, such as through problem-solving courses or reflective journaling, has
been shown to promote metacognition and improve overall performance [26]. Additionally, self-reflection
facilitates the identification and resolution of misconceptions contributing to improved teaching practices [27].

3. METHOD
3.1.  Research design

Exploratory sequential mixed method design was the design used by the researcher. It was a method
for sequentially collecting and analyzing qualitative and quantitative data [28]. The research followed a
three-phase approach. Initially, qualitative data was collected and analyzed, followed by the collection and
analysis of quantitative data. Finally, the data from these two distinct strands were integrated to examine the
phenomenon in greater depth and to explain the connection between the qualitative and quantitative findings.
The first phase involved qualitative data collection to examine the phenomenon, followed by the collection of
quantitative data to elucidate the relationship between the qualitative data.

3.2.  Participants
The participants in this research consisted of senior high school students enrolled during the

2022-2023 academic year from various regions in the Philippines, including the national capital region
(NCR). Senior high school students were selected for this study because they were still at a stage. The first
phase of data collection involved 80 senior high school STEM students from diverse regions. These
participants provided the initial dataset for the study. In the second phase, 20 respondents were carefully
selected from the first-phase participants based on their performance in the mathematical misconception tests.
Specifically, those who made the highest number of mistakes were chosen. The third and final phase
expanded the participant pool to 310 senior high school STEM students from different regions. This phase
primarily involved completing the SMMS.

3.3.  Instruments
The research used a set of instruments for each phase of data collection. The mathematical

misconceptions tests were administered to the participants in the first phase. This test covered general
mathematics, probability, pre-calculus, and basic calculus competencies. The delivery of the test was
facilitated through Google Forms, ensuring ease of access for participants. The second phase used interview
questionnaires based on responses obtained in the first phase. These questionnaires were designed to be
highly customized, with questions designed to each participant’s specific responses from the initial test
phase. For the third and final phase, the research introduced the “questionnaire on self-reflected mathematical
misconceptions”. This comprehensive instrument contained 70 statements aimed at assessing misconceptions
among participants. It utilized a Likert scale, allowing participants to rate their responses. The development
of this questionnaire was based on insights gained from the first and second phases of data collection.

3.4.  Data analysis
The Delphi method was utilized to analyze the data of this study. The Delphi method is a systematic

process used to develop a group of opinions collected from a specific group of specialization [29]. This
method involved a series of data collection. This study had two phases (first and second rounds) of gathering
qualitative data to develop collective opinions that were beneficial for formulating possible statements
incorporated into the developing tool. Then, another phase of data collection (third round) for quantitative
data, which was pilot testing, was conducted. Exploratory factor analysis (EFA) and CFA were utilized for
the quantitative data that was collected from the third phase. EFA was a statistical inference method for
developing and validating theories and measurements [30]. The researchers used this statistical method to test
the consistency of the items with the generated construct from the data to ensure the reliability of the
instrument. The CFA is a statistical technique for psychopathology and personality questionnaire construct
validation [31]. The researcher utilized CFA to test the validity of the instrument.

4. RESULTS
4.1.  The underlying constructs of the questionnaire on self–reflection on mathematical misconception

To determine the underlying constructs and statements of the questionnaire on self-reflection of the
mathematical misconceptions, the researchers used the EFA. Table 1 presents key findings from the analysis.
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The kaiser-meyer-olkin (KMO) value of 0.933, exceeding the threshold of 0.50, indicates the instrument’s
high utility. Furthermore, the p-value of 0.000 in Bartlett’s test of sphericity demonstrates the instrument’s
significance. The total variance explained in the initial iteration reveals insights into the potential number of
components that can be derived from the evaluated items. Upon examination, it was observed that the
extraction sums of squared loadings and rotation sums of squared loadings columns were empty for items 5
to 70. Four components were identified, focusing on items with complete data in both rows and columns,
suggesting that the data evaluation resulted in four factors.

The researchers derived a final KMO value of 0.931 through this iterative process. This value
surpasses the minimum threshold of 0.50 and approaches unity, indicating that the instrument employed in
the study is valid. Additionally, the significance of the tool was evaluated through Bartlett’s test of sphericity,
yielding a p-value of 0.000. The obtained p-value signifies the statistical significance of the instrument.
Consequently, based on the results mentioned above, the instrument utilized in the study exhibits a high level
of usefulness and acceptability.

Table 1. KMO and Barlett’s test of sphericity of initial iteration
KMO and Bartlett’s test Initial iteration Final iteration

KMO measure of sampling adequacy .933 .931
Bartlett’s test of sphericity Approx. chi-square 5518.492 5518.492

df 861 861
Sig. .000 .000

Table 2 provides valuable insights into the identified factors and their associated observed variables.
Examining absolute loadings greater than 0.4, it is evident that items 1-16 load significantly onto factor 1,
items 17-31 load strongly onto factor 2, items 32-36 load onto factor 3, and items 37-42 load onto factor 4.
Upon closer examination of the table, it becomes clear that five distinct factors have been obtained, each
comprising a specific number of variables. Factor 1 encompasses 16 variables, factor 2 includes 15 variables,
factor 3 consists of 5 variables, and factor 4 comprises 6 variables.

Factor 1, composed of 16 items, is characterized by statements about difficulties in various
mathematical concepts and procedures. These include challenges with finding the least common denominator
of rational expressions, solving equations, converting percentages to decimals, and understanding limits. This
factor is labeled “lack of procedural and conceptual knowledge.” Factor 2 comprises 15 items reflecting
misconceptions related to integral calculations, domain determination, absolute values, logic statements,
limits, and probabilistic beliefs. This factor is named “poor mathematical abstraction,” signifying difficulties
in abstracting and generalizing mathematical concepts. Factor 3 consists of 5 variables, indicating issues
related to graph sketching, mathematical induction, probability problem-solving, general mathematical
analysis, and neglecting points of discontinuity in integration. This factor is termed “internal barrier” and
suggests internal challenges in understanding and processing mathematical problems. Factor 4 comprises 6
variables encompassing misconceptions such as interchanging formulas, forgetting solution steps, reliance on
misleading examples, missing critical keywords, and difficulties understanding graphs’ behavior with
logarithms and exponential functions. This factor is labeled “cognitive conflict,” indicating conflicts in
cognitive structures and problem-solving approaches.

The findings align with previous research, highlighting the significance of conceptual understanding
and procedural knowledge in mathematics [32]. Additionally, they reinforce the notion that mathematical
misconceptions often result from challenges in computational skills and the understanding of mathematical
components, algorithms, and definitions [33]. Cognitive conflict, as observed in factor 4, exemplifies the
differences individuals encounter between their methods of describing mathematical concepts and those used
by others [34].

4.2.  Reliability of the developed questionnaire on mathematical misconceptions
Table 3 shows the factors of mathematical misconceptions and their Cronbach’s Alpha score. Lack

of procedural and conceptual knowledge construct has the Cronbach’s Alpha Score of 0.909 which indicates
a very reliable level of reliability (α>0.80-1.00) [35]. Similarly, the second identified construct, poor
mathematical abstraction, has a score of 0.884, making the same range of reliability measure as the first
factor. This implied that the items included in factors 1 and 2 are consistent, making the component reliable.
The third and fourth components, which are depicted as internal barrier and cognitive conflict, have
Cronbach’s Alpha scores of 0.775 and 0.736, respectively. Both of which indicated an acceptable internal
consistency (α>0.70) [35]. This means that all the items included in factors 3 and 4 are consistent, making the
dimension very reliable as well.
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Table 2. Rotated component matrix of self-reflected mathematical misconception scale

Item No.
Components

Factor 1 Factor 2 Factor 3 Factor 4
1 0.731  

2 0.637  

3 0.615  

4 0.518  

5 0.525  

6 0.699  

7 0.513  

8 0.532  

9 0.474  

10 0.477  

11 0.555  

12 0.515  

13 0.466  

14 0.476  

15 0.423  

16 0.565  

17 0.577  

18 0.574  

19 0.463  

20 0.518  

21 0.520  

22 0.559  

23 0.598  

24 0.575  

25 0.651  

26 0.500  

27 0.457  

28 0.456  

29 0.618  

30 0.461  

31 0.455  

32 0.610  

33 0.505  

34 0.665  

35 0.617  

36 0.524  

37 0.572
38 0.507
39 0.550
40 0.621
41 0.460
42       0.575

Table 3. Factors and Cronbach’s Alpha score of the self-reflected mathematical misconception scale

Factor
Reliability statistics

Cronbach’s Alpha N of items
Lack of procedural and conceptual knowledge 0.909 16
Poor mathematical abstraction 0.884 15
Internal barrier 0.775 5
Cognitive conflict 0.736 6

4.3.  Adequacy of the scale’s internal consistency
To assess the indicators’ validity and reliability as a measurement tool, a confirmatory analysis was

conducted as shown in the path analysis in Figure 1. The path analysis using CFA is depicted through
schematic diagrams where circular shapes symbolize latent variables, and square shapes represent observed
[36]. The double-headed arrows denote the covariance between the four latent factors, while the
single-headed arrows indicate the anticipated direction of influence [37]. Standardized residual covariance
measures how well the observed data matches the expected data in covariance structure models, with higher
absolute values indicating a poorer fit [38]. The factor loadings, which are standardized values representing
the relationship between items and their associated factors, ranged from 0.40 to 0.71. These values fall within
the acceptable range, with all exceeding 0.10, as defined by McNeish et al. [39].

Specifically, the “lack of procedural and conceptual knowledge” construct consisted of 12 items
with factor loadings ranging from 0.58 to 0.71. The “poor mathematical abstraction” construct comprised 13
items with factor loadings ranging from 0.52 to 0.63. The “internal barrier” construct included eight items
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with factor loadings between 0.53 and 0.63. Finally, the “cognitive conflict” construct encompassed eight
items with factor loadings ranging from 0.40 to 0.62. These factor loadings indicate the strength of the
relationship between each item and its corresponding factor.

Figure 1. Path analysis in CFA

Table 4 shows the significance of Pearson’s chi-square adjustment test (χ²) which yields a value of
1503.356 with p=0.000, indicating statistical significance. Nevertheless, it is important to note that the
chi-square statistic is highly sensitive to sample size [40]. As a result, the researcher opted to utilize
alternative fit indices to evaluate the model, including the comparative fit index (CFI), the tucker-lewis index
(TLI), and the root mean square error of approximation (RMSEA) [41]. The CFI and TLI values range
between 0 and 1, with values closer to 1 being considered more indicative of a good fit [42]. Additionally, a
value of RMSEA less than 0.06 is typically regarded as indicative of a well-fitting model [43].

Table 4. Pearson’s Chi-square adjustment test result of the self-reflected mathematical misconception scale
Minimum achieved

Chi-square 1503.356
Probability level  0.000
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When Tables 5 and 6 were examined, the model’s validity is evident. The CFI yielded a value of
0.847, while the TLI registered at 0.838 as shown in Table 5. Both values fall within the accepted range of 0
to 1, affirming the model’s validity. Furthermore, the RMSEA recorded a value of 0.055 as shown in Table 6,
signifying a strong fit to the hypothetical model. 

Table 5. TLI and CFI of the self-reflected mathematical misconception scale
Model TLI CFI

Default model 0.838 0.847
Saturated model 1 1
Independence model 0 0

Table 6. RMSEA test of the self-reflected mathematical misconception scale
Model Square error of approximation

Default model 0.055
Independence model 0.137

Table 7 shows the comparison of the reliability statistics before and after CFA. After completing the
CFA and adjusting the items, the instrument was confirmed with a total of 41 items. This post-analysis
refinement resulted in slight changes in Cronbach’s Alpha score for factor 1, while factors 2, 3, and 4
exhibited higher internal consistency than their initial configurations. This suggests that moving items to their
appropriate factors, where they exhibit internal consistency, improved the overall reliability of the
instrument, achieving a more acceptable level of reliability compared to the initial 42-item version.

Table 7. Comparison of the Cronbach’s Alpha score before and after CFA
Reliability statistics

Factor
Before After

Cronbach’s Alpha N of items Cronbach’s Alpha N of items
Lack of procedural and conceptual knowledge 0.909 16 0.888 12
Poor mathematical abstraction 0.884 15 0.867 13
Internal barrier 0.775 5 0.806 8
Cognitive conflict 0.736 6 0.781 8

5. DISCUSSION
While earlier studies explored the identification of most common mathematics misconceptions of

students across grade levels, our study innovated by developing and validating a SMMS designed to facilitate
an early and efficient detection of misconceptions, allowing for the design of targeted strategies to address
them. Moreover, the scale is also intended to increase students’ awareness of their own misconceptions
through self-reflection. Through a systematic process of EFA and CFA, we successfully identified the
underying constructs of mathematical misconceptions and validated a 41-item SMMS. This scale is
composed of four valid factors namely: lack of procedural and conceptual knowledge (12 items), poor
mathematical abstraction (13 items), internal barrier (8 items), and cognitive conflict (8 items). The
developed questionnaire demonstrated high internal consistency and reliability across all four factors. This
indicates that the questionnaire items consistently measure the intended constructs, making it a good tool for
assessing mathematical misconceptions. 

In a more detailed context, the items under “lack of procedural and conceptual knowledge” factor
implies a specific dimension of students’ mathematical understanding that contributes to their difficulties in
learning and applying mathematical concepts. This factor encompasses two key aspects: procedural
knowledge and conceptual knowledge. Procedural knowledge refers to a student’s ability to execute
mathematical procedures, such as carrying out computations, following algorithms, and applying specific
methods to solve mathematical problems [44]. Our findings revealed that students lack the level of
proficiency in computational skills and struggle with the practical aspects of performing mathematical
operations. They have problems in accurately and efficiently executing mathematical procedures, which may
lead to errors and misconceptions [11], [45]. On the other hand, conceptual misconceptions suggests that
students not only struggle with procedural aspects but also face challenges in understanding the underlying
concepts and principles of mathematics. Conceptual knowledge involves understanding the foundational

ideas that connect different mathematical concepts [9]-[10], [46]. Our findings indicates that difficulties in
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this area may lead to misconceptions where students may have an erroneous understanding of the
relationships between mathematical concepts. This misconception factor is similar with the findings of
Syahrir et al. [47] which revealed that conceptual and procedural misconceptions are common difficulties of
students across levels and across mathematics subjects. 

As for the items under “poor mathematical abstraction” factor, this pertains to the difficulty in
constructing the concepts in mathematics. Mathematical abstraction refers to the process of understanding
and manipulating mathematical concepts beyond concrete examples [48]. Our result shows that many
students struggle with this cognitive process, leading to a higher likelihood of misconceptions. It further
implies that students who face challenges in abstracting mathematical ideas may find it difficult to interpret
complex concepts accurately, potentially resulting in misconceptions. This finding is similar with the
findings of Kadarisma et al. [49] which suggests a correlation between students’ misconceptions in
mathematics and their ability to engage in mathematical abstractions. In this context, we posit that the level
of students’ mathematical abstraction ability plays an important role in the occurrence of misconceptions.
Our findings further imply that as students enhance their skills in mathematical abstraction, they become less
prone to misconceptions and are better equipped to grasp the underlying mathematics principles. Moreover,
educators and policymakers can use these insights to design instructional strategies that focus on enhancing
students’ mathematical abstraction abilities.

On the other hand, “internal barriers” factor were items that are associated with influences exerted by
individuals encompassing their interests and perceptions of the difficulty associated with mathematics. These
influences pertain to the internal aspects of individuals, including their personal interests and perceptions of the
difficulty associated with mathematics or other subjects. Moreover, this identified misconception implies that
individuals may develop certain beliefs about the complexity or difficulty of mathematics. These perceptions
can act as psychological barriers, affecting their confidence and willingness to tackle mathematical problems.
Sharif [50], negative perceptions may lead to avoidance behaviors or a reluctance to put effort in understanding
mathematical concepts. Our findings suggest that building a positive attitude towards mathematics, promoting
interest, and addressing misconceptions about the difficulty of the subject can help mitigate some of these
internal barriers and enhance students’ overall learning experience in mathematics.

Lastly, items under “cognitive conflict” factor pertains to a state of cognitive incongruity, where there
is a lack of harmony between an individual’s pre-existing cognitive structures and the incoming external
information [51]. Our finding reveals that this misalignment leads to a state of uncertainty, doubt, confusion,
contradictions, and conflict leading to misconceptions. Mathematical concepts often build upon one another,
and when there is a misalignment between a student’s prior knowledge and new information, misconceptions
can easily emerge. These misconceptions, if not addressed, can persist and hinder further learning.

This study has provided a valuable tool for assessing and addressing mathematical misconceptions
while shedding light on their underlying factors. The analysis of these factors explains the multifaceted
nature of mathematical misconceptions among senior high school STEM students in the Philippines,
providing valuable insights for educational interventions and curriculum design aimed at addressing these
misconceptions and enhancing mathematical learning.

6. CONCLUSION
The developed and validated scale for identifying misconceptions in senior high school mathematics

is a valuable tool that can provide valuable insights into areas that require focused attention to improve
students’ mathematical proficiency. The study offers several key recommendations: First, educators should
harness the validated questionnaire as a valuable tool to assess and address students’ mathematical
misconceptions, identifying areas where students struggle most and enabling tailored instructional strategies.
Second, educators can formulate targeted intervention strategies informed by the identified factors,
potentially employing additional practice and conceptual teaching methods for those lacking procedural and
conceptual knowledge and integrating conflict resolution strategies for students experiencing cognitive
conflicts. Third, curriculum developers should utilize the study’s findings to inform the development of more
effective and comprehensive curricula, addressing common mathematical misconceptions from the outset.
Finally, further research is encouraged to deepen our understanding of the causes and remediation of
mathematical misconceptions, potentially through longitudinal studies tracking students’ progress in
overcoming these challenges.
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