
Received April 1, 2017; Revised June 2, 2017; Accepted June 17, 2017

Gurdeep S Hura. (2017). Software Development using Object-First Approach: A New

Learning Strategy. Journal of Education and Learning. Vol. 11 (3) pp. 229-234.

Software Development Using Object-First Approach: A New

Learning Strategy

Gurdeep S Hura *

University of Maryland Eastern Shore

Abstract
Software Engineering approach deals with the Software Development (SD) that is aligned with design and

development of software applications. The Software Development may be implemented in a variety of

techniques but its implementation using a procedural paradigm and an imperative language seem to be more

effective and efficient for the design and implementation of software applications. The procedural approach for

Software Development offers advantages as this it may be used to teach some basic features of programming

languages. The object of this paper is to introduce the software development and associated object-first approach

for the design of software project application using top-down method. This approach defines functions and

modules as basic units for the design and implementation and also for offering hands-on experiences with the

basics of programming languages of sequences, selections, iterations structures. These structures will be used to

define various modules with programming language constructs for of software development process. The

software Development process is one of the very crucial processes of software engineering.

Keywords: software engineering, software development, programming, object-first approach

* Gurdeep S Hura, Department of mathematics and Computer Science, University of Maryland Eastern Shore,

Princess Anne, MD 21853

E-mail: gshura@umes.edu

230 Software Development using Object-First Approach: A New Learning Strategy

Introduction
Software Engineering deals with Software Development (SD) that is aligned with design and

development of software applications. It includes the requirements specifications meeting the needs of

clients [1, 2]. It may also involve formal specifications and formal methods if the application is large

and complex. The software engineering, course is one of the core courses of any Computer Science or

Information Systems or Computer Engineering, discusses various phases of software engineering life

cycle. The Development within software engineering process is aligned with the design and

implementation of software project and it also deal with understanding of basic features of

programming language. Further it also helps in learning the design and testing methodologies of

Software Engineering. The teaching team provides the program specifications, so, there is normally not

much emphasis on requirements elicitation or systems analysis.

The course on software engineering offers needed skills and necessary knowledge for software

development and as such students taking the course acquire the appropriate experience. The offering of

the course teaches the required theory that is generally not too difficult to understand and it ensures that

students gain the necessary experience in a very simple and easy way. The course can become very

interesting and learning provided if this can be designed with relevant outcomes that can make them

more proficient and confident. However, being proficient in a skill is a function of time and the time

available on a degree program is simply not enough. Thus, it is essential that the course team design the

practical elements of a software engineering and other programming-based courses of study with great

care and ensure an effective delivery.

In Computer Science or Information systems, the first CS/IS course provides the basics of

programming language. This course helps the students to use their knowledge and skills of

programming into other programming-based courses at educational institutions. This paper focuses on

the teaching of software engineering via software development process for design and implementation

of software applications.

In this paper, we will present the traditional method of offering a course on software

engineering. We will introduce the concept of procedural paradigm and highlight the limitations of this

on the software development. Finally, we will introduce object- oriented approach for the software

development. We will also introduce how this approach supports the first programming language.

A part of this work has been presented in conference [11].

Software Development: A Brief Introduction
There are different methods of implementing software development and also a number of

paradigms for representing functional composition. Some of the needed frameworks include: imperative,

object-oriented, functional and logic. All these frameworks are very important to understand the basics of

programming language at different levels. It has been observed that procedural or imperative frameworks

are being extensively for providing training on object-oriented or object-based approach for software

development. This approach offers the following features:

1) This approach is highly compatible with today’s computers.

2) The third (and fourth) generation languages are highly suitable for implementing procedural

programming.

3) The programming based projects consist of set of projects or objects, but it looks that set of

procedures seems to be better and more natural than set of objects.

There are some situations where the software development can be designed using traditional

functional and logic programming methods. In the following section, we will present both the frameworks

procedural programming and object-oriented [3].

Procedural Programming

Although the procedural approach may be considered as suitable for programming-in-the-small, it

is not entirely appropriate. It is a bottom-up approach highly dependent on the chosen language. The

emphasis is on learning a language and not on the modelling of realistic computational problems. In most

cases, teaching of the language follows a scheme that requires the teaching of the following in, more or less,

the order, as presented here:

1) General program structure

2) Declarations and Variables

3) Input/output and Assignments

4) Iterations and Selections

5) Arrays and Records

Gurdeep S Hura. (2017). Journal of Education and Learning. Vol. 11 (3) pp. 229-234. 231

6) Functions and Procedures

7) Other features of the language

In addition to learning the syntax of a computer language, we need to address the language

environment, often called interactive development environment (IDE) where we discuss the use of the IDE,

use of the editor to input and edit source code, and use of the compiler system for compilation, linking,

building and executing the programs. Furthermore, we need to get a clear understanding of the system and

other diagnostics including syntax and runtime errors, all of which adds another layer of difficulty to the

learning process [4].

In summary the following features for designing any software applications need to be understood:

1) Detailed design steps for software development

2) Syntax of necessary declarative and other functional statements of a language to convert design into

program code

3) Procedures for entering, editing, compiling, linking and executing the program

4) All other procedures such as starting the IDE, getting into the language system and closing the

project.

The Design of software development may use any techniques like function-oriented

methodology, functional decomposition or stepwise refinement and each of these techniques also provide

easy learning of language and design and its environment.

Thus, the steps required for the design of software development are well understood and are being

used properly. It is important to note that the right use of these steps may create confidence and provide

useful results, failing which the developers may get disappointed.

Not with standing the difficulties mentioned above, a careful observation reveals that the process,

that is usually followed, does not support each construction of software as an engineering activity.

Although, applications are being designed and developed, the emphasis is not on building software based on

accepted engineering principles, but make sure that we understand the need to employ when we are engaged

in the development of complex software. Also, we find that the project team are so busy learning the

essentials that the approach does not leave much time for learning documentation, quality, professionalism

and elements of good practice.

In order to address some of the issue as discussed above, we introduce an objects-first approach for

the software development.

An Objects-First Approach

An objects-first approach requires that modules and functions are regarded as basic building

blocks, that software applications consist of interacting modules and that new modules are built using

existing ones, whenever possible. This forces a structured approach to modular programming where use of

modules and functions establishes the principles of code reuse and functional independence. Clearly, the

emphasis is on modularisation, encapsulation, recursion and reuse. This contrasts sharply from the

traditional procedural approach where modularity, functions and recursion do form part of the curriculum

but they are taught much later in the module.

Object-First-Based Software Development
This section presents the use of object-first approach to procedural paradigm for the

implementation of an engineering approach to software development. The proposed model for the design is

a loosely based method and is based on the modelling concept [5]. In the model, the design method regards

the construction of software as an engineering activity where modules and functions are the fundamental

building blocks. The method helps to produce properly structured and good quality modular software. It is a

top-down approach where the important concepts of object technology and principles of engineering are

introduced right at the beginning of project development.

Our method requires the establishment of a library of functions on a suitable topic (e.g. graphics)

prior to the delivery of the software development (SD) module. When students begin to learn SD, their

programs will be written as sequences of given functions where we will consider only the external

behaviour of these functions. Building programs in terms of functions will help us to understand

modularisation, reuse and encapsulation mechanisms, without knowing the intricacies of the computer

language.

It is important that we are able to successfully execute their programs early on in the course. This

provides a sense of achievement and increases our confidence. After successfully running a number of

simple programs and understanding the basics of the language environment, programs are written as

selections and repetitions of the same functions. It is at this point that we learn the general syntax of

232 Software Development using Object-First Approach: A New Learning Strategy

selection and iteration statements of the language. Now, the importance of modularity and code reuse can be

re-emphasized and mechanisms for reducing software complexity, incremental development, polymorphism

and overloading of functions explained which can be practiced in later sessions when we produce our own

libraries of functions.

We have gained enough experience and understanding in learning the syntax of input, output,

assignment and other basic statements of the language for producing 'real' programs. Now, we have to

practice functional independence, quality, code readability, maintainability and other elements of good

programming style. Further, we have the necessary practice and knowledge of the language, we can begin

to 'problem solve', design and build our own programs from given specifications.

During the development of software design module, our focus should be on problem description

and problem solving strategies. We suggest that the design technique be a simple one so that we do not feel

that we are learning an additional method - Stepwise Refinement [7] is a perfectly acceptable approach.

Although, we will learn by producing our own programs, use of good quality, well structured and properly

documented worked examples will greatly advance the learning process.

Learning Strategy

We now outline a learning plan based on the above model. We assume the module will be

discussed for the duration of at least one month during which lecture notes, homework, practice on

programming and understanding the software development process within the context of software

engineering for the design of software project.

During the first week, we expect the team members to create a library of functions on an

appropriate topic e.g. graphics with simple example of two simple routines such as LINE and CIRCLE. It

will demonstrate how to draw a line of a given length in a given direction starting at a given point and the

other to draw a circle of a given radius at a given point. After the basics, we introduce the IDE and get the

team members to familiarize with the editor. We will give a simple working program, which they enter and

execute to understand the compiling and execution process. Further, we introduce the program structure in

the chosen language. It is important that examples chosen are well constructed and properly commented to

illustrate good practice.

During the second week, we introduce the concept of functions and modules as components and

explain the purpose and use of some of the library routines e.g. LINE and CIRCLE. Next, we can explain

the significance and meaning of required parameters and use of argument lists. Now the team members will

get experience in writing simple programs calling functions in a sequence, drawing a chair (consisting on a

number of straight lines) or a table (consisting of a circle and a number of straight lines) and drawing a row

of chairs or a number of tables using only the functions they are already familiar with e.g. LINE and

CIRCLE. Now we can introduce the basic design process e.g. stepwise refinement that includes selection

and iteration statements and get experience with these in the program by drawing a row of chairs or a table

surrounded by a number of chairs.

During the third week, we explain the significance and importance of good programming style,

modularity, code reuse, functional independence and other engineering principles, the advantages of

incremental development and benefits of producing proper designs and test plans, benefits of using

appropriate standards, developing quality software, keeping accurate records and producing proper

documentation. Next, we encourage them to use modules they used in earlier programs (e.g. LINE and

CIRCLE) represented objects and classes and to create new objects (chairs and tables) in their programs.

Now, we introduce the basic concepts of object technology, the essential terminology and teach the syntax

and use of input, output and assignment statements of the language. Finally, we will expect the team

members to write their own functions and objects and produce modules say CHAIR to draw a chair

(invoking perhaps just a single function LINE) and TABLE to draw a table (invoking perhaps just one

CIRCLE and a number of LINE functions).

During the fourth week, we expect the team to produce more complicated programs and practice

what they have learnt. Here, we may offer windows-oriented programming environment where they will be

exposed to programming language such as VBasic, C# and Java [8-10]. Further, advanced features of the

language and other engineering concepts can be taught. Make them aware of the difference between

programming-in-the-small and programming-in-the-large. Re-emphasise the advantages of incremental

development and benefits of producing proper designs and test plans.

Learning Plan

The learning strategy and plan for training for the development of Software Development of

Software engineering presented in this paper suggests the sequence of following concepts in the sequence:

Gurdeep S Hura. (2017). Journal of Education and Learning. Vol. 11 (3) pp. 229-234. 233

1) Program structure and program layout

2) Use of libraries and sequences of statements

3) Functions, procedures and parameters

4) Selection and repetition statements

5) Input, output and assignment statements

6) Data structures: arrays and records

7) Advanced features of the language.

Programming Languages
The primary objective of Software Development module should be to train the team members with

the principles of programming. In this respect the choice of a language becomes irrelevant [6]. However, the

teaching team need a language to illustrate the principles and provide practice of SD. Choice of the

language, then, depends on the programming paradigm employed. Since, procedural programming is the

most favoured approach; first languages tend to be mainly procedural. However, object-oriented, object-

based and visual languages (e.g. C++ and VBasic) can also be used for procedural programming for console

applications. In some cases, we can also use declarative languages that are based on logic and functional

programming paradigms [3].

It is often suggested that a first language should be well structured, available in the sense of staff

expertise and easy to teach, learn and use [6]. Whereas, this may be acceptable for programming-in-the-

small, when training principles of engineering and elements of good practice with a view to producing

complex software, the criteria is not sufficient. Since choice of a language depends, also, on the

programming and design methods used, the above criteria need to be extended. We suggest that a first

language should possess at least the following characteristics:

1) Small, simple but powerful

2) Strongly typed and block structured

3) Procedural with capabilities of offering extensions to implement object technology

4) Features allowing implementation of engineering principles and concepts

5) Adoption by industries

Simplicity and smallness imply ease of use as well as ease of learning and debugging. Power of a

language is its ability to deal with complex problems as well as simple ones. Strong typing reduces

debugging problems and block structuring helps to produce structured and modular software. Features to

implement object technology and engineering principles are essential when implementing object-oriented

approach or a model similar to the one suggested in this paper. Industrial relevance is important for the

reasons of collaborating with Software industries.

Fischer [3] suggests the following criteria for the programming language choice:

1) Powerful enough to demonstrate the programming concepts

2) Easy to learn

3) Not error-prone i.e. get running fast

4) Easy to use development tools

5) Well supported by ways of availability of library functions.

Currently available languages such as VBasic, C# and Java [8-10] are all highly suitable first

languages for the development of Software Development in Software Engineering.

Conclusions
Procedural paradigm is the traditional and most favoured approach for training Software

Development. It is a bottom-up and syntax driven approach highly dependent on an imperative language.

With this, we can learn not only the syntax of a language but its environment as well. If a formal design

method is also included at the same time as the language then we can get so overwhelmed by the amount of

learning that some may loose their confidence and get disappointed with the learning experience. Also, the

traditional approach teaches programming in the sense of producing code and does not teach SD as an

engineering activity.

To resolve the inherent issues in the traditional approach to teaching SD, this paper suggested an

objects-first approach to procedural paradigm. This is a top-down approach, which regards functions and

modules as the fundamental building elements for the construction of software. The emphasis is on

modularity, code reuse, practice of engineering principles as well as quality, standards and professionalism

right from the start.

A learning strategy and plan scheme was also presented which can be used as a basis to construct a

well-defined training and understanding of Software Development.

234 Software Development using Object-First Approach: A New Learning Strategy

References

Sommerville I, “Software Engineering”, Addison Wesley, 8th Ed, 2006

Bell D, “Software Engineering for students”, 4th Ed., Addison Wesley, 2005

Fischer P, “Teaching programming to beginners”, IMM, DTU, Retrieved 20 June 15, from

www2.imm.dtu.dk/~tb/fischer.pdf

Dehnadi S and Bornat R, 2006, “The camel has two humps”, Retrieved 20 June 15, from

www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Bornat R. “Programming from first principles”, Prentice Hall.

Busschots B, “Teaching programming – why the choice of first language is irrelevant”, Bloggs dated 8

Jan 2015, Retrieved 20 June 08, from http://www.bartbusschots.ie/blog/?p=634

Wirth N, “Program development by stepwise refinement”, Comm. ACM, Vol 14, No 4, pp 221-227,

1971

Balena F, “Programming microsoft Visual Basic”, 2nd Ed, Microsoft Press, 2006

Murach J, “C# 2008”, by dissection, M Murach & Associates, March 2008

Deitel and Deitel, “Java: How to program”, 7th ed, Prentice Hall, 2007.

Gurdeep Hura,” An object-first approach for the Software Development: a new learning paradigm,

MTMI conf. Virginia Beach, VA, Sept 22-23, 2014

